Effect of highly selective vagotomy on pancreatic exocrine function and on cholecystokinin and gastrin release

N I RAMUS, R C N WILLIAMSON*, J M OLIVER, and D JOHNSTON†

From the University Department of Surgery, Bristol Royal Infirmary, Bristol

SUMMARY The effect of highly selective vagotomy on pancreatic exocrine function and the release of gastrin and cholecystokinin was studied in 10 patients with endoscopically-proven duodenal ulceration. Cholecystokinin and gastrin concentrations in serum both increased significantly after highly selective vagotomy. Amylase concentration in the duodenal aspirate increased significantly after vagotomy, but trypsin concentration remained unchanged. The expected reductions in gastric acid secretion were noted. Thus highly selective vagotomy reduces acid secretion effectively in patients with duodenal ulcer without impairing the exocrine function of the pancreas.

Impairment of pancreatic and hepatobiliary function may help to explain the diarrhoea and steatorrhea that follow truncal vagotomy and pyloroplasty in 25–40% of patients.1–8 Reduced pancreatic exocrine secretion after truncal vagotomy has been ascribed variously to parasympathetic denervation9 10 suppressed release of intestinal hormones,11–13 altered gastric emptying13–15 and, most recently, interference with enteropancreatic reflexes.13 16 The introduction of highly selective vagotomy for the treatment of duodenal ulceration has greatly reduced the incidence of dumping, diarrhoea, and steatorrhea.5 6 8 17 18 probably because postoperative gastric emptying of solid and semi-solid meals is unaffected,15 19–20 and gastric emptying of fluids is less precipitate than after truncal vagotomy and drainage.19 21 Highly selective vagotomy might therefore be expected to cause less interference with pancreatic exocrine function than truncal vagotomy. The present study examines this prediction.

Methods

Ten patients with endoscopically-proven duodenal ulceration, who had given informed consent, were studied shortly before and two to three months after highly selective vagotomy; this was performed by a standard technique.22 A Lundh test meal‡ was chosen to provide an endogenous 'physiological' stimulus to pancreatic secretion. After an overnight fast a Dreiling double-lumen tube was passed into the duodenum under radiographic control, and basal duodenal juice was collected for one hour while the stomach was continuously aspirated. The test meal was then instilled into the stomach via the gastric lumen, and duodenal juice was continuously collected over 15 minute periods for the next two hours. Samples of duodenal juice were stored at 5°C for subsequent measurement of the concentration of trypsin23 and amylase (Phadebas method). The volume and pH of the juice were also recorded. During the three-hour period of study serum samples were obtained for radioimmunoassay of cholecystokinin24 and gastrin.25 Gastric acid secretion was measured separately, before and five to seven days after operation; basal acid output was determined, together with the peak acid output to intramuscular pentagastrin (6 µg/kg:PAO₁) and intravenous insulin (0.2 IU/kg:PAO₂). For the postoperative test a larger dose of pentagastrin (10 µg/kg) was used. PAO₂ was calculated by subtracting basal acid output from the value derived by doubling the two highest consecutive 15-minute outputs after insulin. PAO₃ was calculated by trebling the sum of the two highest consecutive

* Address for correspondence: Professor R C N Williamson, Department of Surgery, Bristol Royal Infirmary, Bristol BS2 8HW.
† Present address: The General Infirmary, Gt George Street, Leeds LS1 3EX.
Received for publication 13 November 1981

‡ Fifteen grams of casilan, 18 g corn oil, 40 g glucose made up to 250 ml with water.
10-minute outputs after pentagastrin. Completeness of vagotomy was assessed using Hollander's criteria. Results are expressed as means (±SEM). Statistical significance was assessed by Student's t test for paired data or the Wilcoxon matched-pairs signed-rank test, as appropriate. Integrated values were calculated as previously described to determine the contribution of altered basal levels to the difference observed in stimulated responses.

Results

PANCREATIC EXOCRINE FUNCTION

Trypsin (Fig. 1)
The mean preoperative basal trypsin concentration was 4.9 IU/l. This level increased fourfold during the first hour after the Lundh meal and threefold during the second hour. Operation did not significantly affect either the basal or the stimulated concentration, although the trypsin concentration was reduced during the first hour after the food stimulus (p=0.1). Total three-hour output and integrated trypsin values were unchanged postoperatively.

Amylase (Fig. 2)
The Lundh meal failed to produce a significant increase in amylase concentration in the duodenal aspirate either before or after vagotomy. Postoperative amylase concentrations were consistently higher than preoperative values at basal, first, and second hour, but the differences were only significant during the second hour. When the entire three-hour output was considered, however, amylase concentration was found to be significantly greater after than before highly selective vagotomy (p<0.002). Integrated amylase values were not significantly different postoperatively, indicating the change to be in basal levels.

HORMONE ASSAYS

Cholecystokinin (Fig. 3 and 4)
Both before and after operation the Lundh meal stimulated the secretion of cholecystokinin: preoperative basal levels (420 pg/ml) were increased threefold 10 minutes after the meal (Fig. 3), while the much greater postoperative basal levels (1987 pg/ml) were further increased to 4282 pg/ml. Integrated cholecystokinin values (Fig. 4) showed that these changes reflected a true increase in release after highly selective vagotomy, from 38×10^3 pg-min/ml to 177×10^3 pg-min/ml.

Gastrin (Fig. 5)
Levels were increased after the test meal in both the pre- and postoperative studies. Before vagotomy mean basal gastrin concentration was 52 pg/ml, reaching a plateau at nearly twice this value 10 minutes after food. After vagotomy basal levels were much higher (210 pg/ml), and stimulated levels remained higher than preoperative values at every time period (p<0.05). The integrated gastrin response to the test meal after highly selective vagotomy, however, did not differ significantly from the preoperative values (3550 pg-min/ml).
Effect of highly selective vagotomy on pancreatic exocrine function and hormone release

GASTRIC ACID SECRETION (Fig. 6)
Highly selective vagotomy reduced basal acid output by 57%, PAO_{B} by 40% and PAO_{I} by 95%. According to Hollander's criteria no patient had an 'early positive' rise, but two patients had 'late positive' responses.

DUODENAL VOLUME AND pH
After highly selective vagotomy the volume of duodenal juice tended to be lower throughout the test, but differences only reached statistical significance during the second hour, when the volume fell from 138 ml to 68 ml ($p<0.05$).
Duodenal pH was not affected by highly selective vagotomyn.

Discussion

The reductions in basal and stimulated gastric acid secretion indicated that most of the vagotomies had been adequate. Although the endogenous stimulus chosen (a standard Lundh meal) was able to produce a marked increase in duodenal trypsin levels, the concentration of trypsin in the duodenal collections was unaltered by highly selective vagotomy. Our findings are consistent with reports showing that truncal, but not highly selective, vagotomy reduces enzyme output from the pancreas after insulin stimulation, and that virtual ablation of gastric acid output by the H₂-receptor antagonist ranitidine does not affect pancreatic enzyme secretion.

The hypotheses advanced to explain impaired pancreatic exocrine function after truncal vagotomy have implicated gastric emptying, which is particularly affected by concomitant pyloroplasty or gastrojejunostomy. Highly selective vagotomy, by contrast, has been shown to alter emptying minimally and then only after a fluid test meal. In the present study the volume of duodenal juice tended to be lower after highly selective vagotomy, though significant differences occurred only during the second hour after the test meal, when trypsin content was unchanged.

Duodenal amylase levels were increased throughout after highly selective vagotomy, but, as there was no amylase response to the Lundh test meal, the reason remains obscure. Increased amylase levels have previously been demonstrated after truncal vagotomy but not after selective vagotomy. Possible mechanisms for this effect of truncal vagotomy include altered duodenal emptying, denervation hypersensitivity or loss of vagal inhibition of the pancreas and changes in cholecystokinin release. None of these explanations, however, seems directly applicable to the present finding that highly selective vagotomy increases duodenal amylase content. It is conceivable, though unlikely, that, in the present study, contamination by salivary amylase may have affected the results, despite attempts to keep the stomach empty throughout the test period.

Although the cholecystokinin assay probably indicates relative rather than absolute values, in the presence of unchanged trypsin output the increases in serum cholecystokinin and gastrin after highly selective vagotomy suggest a reduction in pancreatic sensitivity. Analysis of the integrated hormone response has shown a true increase in cholecystokinin release after highly selective vagotomy. By contrast, raised gastrin levels were only a reflection of the increase in basal levels of gastrin, an established effect of truncal vagotomy. Intragastric titration studies with control of luminal pH have shown that this post-vagotomy hypergastrinaemia cannot be explained entirely by loss of inhibition by endogenous HCl when acid secretion is reduced. The increased cholecystokinin release noted in this study might be needed to achieve the same enzyme output from the pancreas, if reduced acid secretion after highly selective vagotomy diminished pancreatic sensitivity. Yet Berstad and associates (1976) have demonstrated what they believe to be an increased pancreatic sensitivity to secretion after highly selective vagotomy and suggest decreased acid output as the possible aetiological factor. As gastrin acts as a tropic hormone to the pancreas, at least in the rat, some indirect increase in exocrine function might be expected to balance the effects of any pancreatic denervation and reduced gastric acidity.

We conclude that highly selective vagotomy produces a satisfactory reduction in acid secretion in duodenal ulcer disease without appreciably altering pancreatic exocrine function.

We thank Dr Richard Harvey for permission to use his cholecystokinin assay and Mrs R Pratt of the University Department of Medicine, Bristol Royal Infirmary, who performed the Lundh test meals.

References

8 Edwards JP, Lyndon PJ, Smith RB, Johnston D. Faecal fat excretion after truncal, selective and highly

stomach.