Effects of transdermal scopolamine, alone or in combination with cimetidine, on total 24 hour gastric acid secretion in patients with duodenal ulcer

C T RICHARDSON AND M FELDMAN

From the Department of Internal Medicine, Veterans Administration Medical Center and the University of Texas Health Science Center, Dallas, Texas, USA

SUMMARY Transdermal scopolamine is an antimuscarinic preparation approved for use in the United States for prevention of motion sickness. A recent study using this drug (0.5 mg/patch) suggested that enough scopolamine was absorbed through the skin to reduce basal gastric acid secretion in patients with duodenal ulcer. We have compared the effect of transdermal scopolamine and oral cimetidine (400 mg twice daily) in seven men with chronic duodenal ulcer, both alone and in combination, on acid secretion throughout an entire 24 hour period in a placebo-controlled, randomised, double blinded cross over study. The effect of these drugs on basal, interprandial, and nocturnal gastric juice volume and hydrogen ion concentration also was measured. Transdermal scopolamine had no significant effect on mean 24 hour acid secretion (placebo, 409.4 mmol/day; scopolamine, 364.0 mmol/day) nor did it have a significant effect on gastric juice volume or hydrogen ion concentration. The combination of transdermal scopolamine plus cimetidine was not more effective than cimetidine alone in reducing total 24 hour acid secretion (mean, 231.8 versus 235.3 mmol/day) nor in reducing gastric juice volume or hydrogen ion concentration.

Transderm-Scop (TDS, Ciba-Geigy Corp, Summit, NJ.) is a sustained release formulation of the antimuscarinic drug, scopolamine (1-hyoscine), designed to allow continuous absorption of this belladonna alkaloid from a patch applied to the skin. After delivering a local, skin saturating loading dose, the transdermal system delivers about 0.5 mg of scopolamine at a constant rate over three days (at a rate of about 7 µg/h or 0.1 µg/kg/h). Transdermal scopolamine is approved by the Food and Drug Administration in the United States for prevention of nausea and vomiting associated with motion sickness. Two recent studies1,2 have suggested that the amount of scopolamine absorbed through the skin is sufficient to inhibit basal and nocturnal gastric acid secretion in patients with duodenal ulcer, suggesting that this product could be useful and convenient as a gastric antisecretory agent.

We evaluated in a placebo controlled, randomised study the effect of transdermal scopolamine on acid secretion in duodenal ulcer patients studied over an entire 24 hour period, during which breakfast, lunch, and dinner were given. The effect of transdermal scopolamine on 24 hour acid secretion was compared with the effect of cimetidine taken in a dose of 400 mg twice daily, a dose which accelerates healing of duodenal ulcers.3,4 Because some antimuscarinic drugs enhance the inhibitory effect of histamine H\textsubscript{2}-receptor antagonists on gastric acid secretion,5,6 another purpose of these studies was to determine whether the combination of transdermal scopolamine and oral cimetidine was more effective than cimetidine alone in reducing 24 hour gastric acid secretion in duodenal ulcer patients. Basal, interprandial and nocturnal gastric juice volume and hydrogen ion concentration were also compared.

Methods

PATIENTS AND SUBJECTS

Seven men with chronic, asymptomatic duodenal ulcer, previously diagnosed by barium study and/or endoscopy, participated in these experiments. Their ages ranged from 31–62 years (mean, 50 years).
Basal and peak acid output (6 µg/kg pentagastrin subcutaneously), determined in preliminary studies, averaged 10.5±3.4 and 49.5±4.6 mmol/h, respectively. Antisecretory medication was discontinued at least three days before each experiment. Studies were approved by a Human Studies Subcommittee on 5 March, 1984 and informed, written consent was obtained from each patient and subject.

STUDY PROTOCOL

Duodenal ulcer patients participated in a double blind, randomised, 4 limb crossover study. Individual experiments were always separated by at least seven days. At 8 pm on the evening before the experiment, patients applied a single patch (transdermal scopolamine or placebo) behind their ear and this patch was left in place for the next 36 hours. At 7:30 am the next morning, an Anderson nasogastric tube (AN10, HW Anderson Products, Inc, Oyster Bay, NY) was positioned in the antrum of the stomach using fluoroscopic guidance. The 24 hour acid secretory study began at 8 am, 12 hours after placement of the transdermal scopolamine or placebo patch. A 600 ml liquidised meal (142 g ground sirloin steak, a piece of toast, 1:6 g butter, and water, adjusted to pH 5-0 with 0:1 N HCl) was infused into the stomach through the nasogastric tube at 9 am (breakfast), 2 pm (lunch) and 7 pm (dinner). Cimetidine tablets (400 mg, Smith Kline Corporation, Philadelphia, PA) or identical looking placebo tablets were taken by mouth with 50 ml water at 9 am and 7 pm. Each patient participated in all four studies: placebo patch – placebo tablets; transdermal scopolamine patch – placebo tablets; placebo patch – cimetidine tablets†; and transdermal scopolamine patch – cimetidine tablets, all of which were provided by Ciba-Geigy Corp.

During the 24 hour period, patients were confined to a study bed and permitted to read, watch television, or sleep according to their wishes. Smoking was prohibited. Urine was voided into a plastic urinal.

MEASUREMENT OF GASTRIC ACID SECRETION, GASTRIC JUICE VOLUME AND pH

Two methods were used alternately to measure gastric acid secretion: gastric aspiration and in vivo intragastric titration. From 8 am to 9 am, basal acid secretion was measured by gastric aspiration, as previously described.8 Volume of gastric juice was measured in 15 minute increments and pH of each sample was determined using a pH meter (Radiometer, Copenhagen, Denmark). In each gastric juice sample pH was converted to hydrogen ion concentration by the method of Moore and Scarlata.9 Acid secretion during the basal, interprandial and nocturnal periods (see below) was calculated by multiplying the volume times hydrogen ion concentration of each gastric juice sample.

From 9 am to 11 am, acid secretion in response to the liquidised breakfast meal was measured by in vivo intragastric titration to pH 5-0 with 0.3 N sodium bicarbonate.10 At 11 am, the stomach contents were emptied and gastric aspiration resumed until 2 pm. Acid secretion in response to lunch was measured by in vivo titration from 2 pm until 4 pm. The stomach was emptied again at 4 pm and aspiration resumed until 7 pm. Acid secretion in response to dinner was measured by titration from 7 pm until 9 pm. Then, after the stomach was emptied, nocturnal acid secretion was measured by aspiration from 9 pm until 8 am the next morning. To prevent volume depletion as a result of prolonged aspiration of gastric juice, isotonic saline was infused intravenously at a rate of 75 ml/h (from 8 am to 9 pm) or 100 ml/h (from 9 pm to 8 am).

STATISTICAL ANALYSIS

Results are expressed as mean± one standard error. Differences in acid secretion with the various medication regimens were compared for significance by analysis of variance. p values less than 0.05 were considered significant.

Results

ACID SECRETION

As shown in Table 1, 24 hour gastric acid secretion

<table>
<thead>
<tr>
<th>Acid secretion (mmol/24 hr)</th>
<th>Placebo</th>
<th>TDS*</th>
<th>Cimetidine†</th>
<th>TDS plus cimetidine‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>320-1</td>
<td>286-9</td>
<td>122-8</td>
<td>139-9</td>
</tr>
<tr>
<td>2</td>
<td>178-6</td>
<td>160-4</td>
<td>79-6</td>
<td>100-9</td>
</tr>
<tr>
<td>3</td>
<td>317-4</td>
<td>301-1</td>
<td>126-7</td>
<td>129-6</td>
</tr>
<tr>
<td>4</td>
<td>293-9</td>
<td>345-6</td>
<td>132-7</td>
<td>188-2</td>
</tr>
<tr>
<td>5</td>
<td>670-5</td>
<td>603-2</td>
<td>420-4</td>
<td>426-9</td>
</tr>
<tr>
<td>6</td>
<td>685-7</td>
<td>521-4</td>
<td>443-3</td>
<td>319-9</td>
</tr>
<tr>
<td>7</td>
<td>426-9</td>
<td>329-3</td>
<td>321-3</td>
<td>317-3</td>
</tr>
<tr>
<td>Mean</td>
<td>409-4</td>
<td>364-0</td>
<td>235-3‡</td>
<td>231-8‡</td>
</tr>
<tr>
<td>±SEM</td>
<td>±71-3</td>
<td>±56-7</td>
<td>±58-6</td>
<td>±46-6</td>
</tr>
</tbody>
</table>

*0-5 mg transdermal scopolamine patch applied behind the ear at 8 pm the evening prior to the 24 hour study.
†400 mg cimetidine by mouth at 9 am and 7 pm.
‡p<0.05 vs placebo and also vs TDS.
Transdermal scopolamine and gastric acid

ranged from 178.6–670.5 mmol/day on the placebo day (mean, 409.4 mmol/day). Transdermal scopolamine had a relatively small and statistically insignificant effect on mean 24 hour acid secretion (mean, 364.0 mmol/day, Table 1). On the other hand, cimetidine reduced acid secretion significantly, with a mean rate of 235.5 mmol/day (Table 1, p<0.05 vs placebo and also vs transdermal scopolamine). The combination of transdermal scopolamine plus cimetidine was not more effective than cimetidine alone in reducing acid secretion (Table 1, p>0.05 vs cimetidine alone). Mean acid secretion rates for each hour from 8 am one day until 8 am the next day are shown in the Figure.

Acid secretion rates during the seven time intervals of the day are compared in Table 2. Basal acid output (8 am–9 am) averaged 12.5 and 9.2 mmol/h on the two study days in which the placebo patch was applied 12 h earlier, compared with 10.7 and 13.7 mmol/h on the two study days in which the transdermal scopolamine patch was applied (p>0.05). Transdermal scopolamine had no significant effect on acid secretion during any time period. The 9 am dose of cimetidine with breakfast inhibited acid secretion in response to breakfast by 47%, between breakfast and lunch by 89%, in response to lunch by 34%, and between lunch and dinner by 25%, indicating that the inhibitory effect of cimetidine was declining gradually. The 7 pm dose of cimetidine with dinner inhibited acid secretion in response to dinner by 43% and inhibited nocturnal acid secretion by 38%. Per cent inhibition of acid secretion at different time periods with transdermal scopolamine plus cimetidine was similar to the inhibition produced by cimetidine alone.

GASTRIC JUICE VOLUME
The mean volumes of gastric juice secreted during the basal, interprandial and nocturnal periods are shown in Table 3. Cimetidine and the combination of cimetidine plus transdermal scopolamine reduced

<table>
<thead>
<tr>
<th></th>
<th>Basal 8–9 am</th>
<th>Breakfast 9–11 am</th>
<th>Interprandial 11 am–2 pm</th>
<th>Lunch 2–4 pm</th>
<th>Interprandial 4–7 pm</th>
<th>Dinner 7–9 pm</th>
<th>Nocturnal 9 am–8 am</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>12.5±4.0</td>
<td>30.5±3.2</td>
<td>15.1±2.8</td>
<td>31.3±3.9</td>
<td>16.5±4.8</td>
<td>27.4±2.6</td>
<td>10.7±2.9</td>
</tr>
<tr>
<td>TDS±</td>
<td>10.7±4.8</td>
<td>30.3±3.4</td>
<td>14.9±4.3</td>
<td>27.1±2.1</td>
<td>14.2±2.1</td>
<td>26.9±2.7</td>
<td>8.9±1.9</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>9.2±3.4</td>
<td>16.1±3.2</td>
<td>1.7±0.9</td>
<td>21.3±2.5</td>
<td>13.8±5.2</td>
<td>15.5±2.9</td>
<td>6.7±2.5</td>
</tr>
<tr>
<td>TDS± plus</td>
<td>13.7±3.9</td>
<td>20.0±2.7</td>
<td>0.8±0.4</td>
<td>20.3±4.0</td>
<td>10.7±2.3</td>
<td>18.4±3.6</td>
<td>6.0±2.1</td>
</tr>
</tbody>
</table>

*Acid secretion measured by gastric aspiration.

**Acid secretion measured by in vivo intragastric titration to pH 5.0.

±5 mg transdermal scopolamine (TDS) patch applied behind ear at 8 pm the evening before the study.

§400 mg cimetidine by mouth at 9 am and at 7 pm.

$p<0.05$ vs placebo.

Figure Mean hourly gastric acid secretion during a 24 hour period in seven patients with duodenal ulcer disease. Results with placebo and Transderm-Scop (TDS) are shown in the top panel while results with cimetidine alone and cimetidine plus TDS are shown in the bottom panel. TDS patch was placed behind the ear 12 hours before beginning the 24-hour study. Cimetidine tablets, 400 mg, were given at 9 am and 7 pm.
gastric juice volume significantly (p<0.05) during
the period between breakfast and lunch (11 am–2
pm) but neither regimen reduced gastric juice
volume significantly during the period between
lunch and dinner (4 pm–7 pm). Only the combina-
tion of cimetidine plus transdermal scopolamine
significantly reduced total gastric juice volume
during the night.

HYDROGEN ION CONCENTRATION
Transdermal scopolamine alone had no significant
effect on hydrogen ion concentration (Table 4).

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Mean (±SE) basal, interprandial and nocturnal gastric juice volume (ml/h) in seven duodenal ulcer patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interprandial</td>
</tr>
<tr>
<td></td>
<td>8–9 am</td>
</tr>
<tr>
<td>Placebo</td>
<td>158±36</td>
</tr>
<tr>
<td>TDS§</td>
<td>135±46</td>
</tr>
<tr>
<td>Cimetidine‡</td>
<td>129±39</td>
</tr>
<tr>
<td>TDS§ plus cimetidine‡</td>
<td>149±31</td>
</tr>
</tbody>
</table>

*Interprandial gastric juice volume was calculated as the average of
the volume secreted during the three hour periods (11 am–2 pm
and 4 pm–7 pm) while nocturnal gastric juice volume was
considered as the average of the volume secreted during the 11 hour
period from 9 pm–8 am.

§0.5 mg transdermal scopolamine (TDS) patch applied behind ear
at 8 pm the evening before the study.

‡400 mg cimetidine by mouth at 9 am and at 7 pm.
*9p<0.05 versus placebo and TDS alone.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Mean (±SE) basal, interprandial and nocturnal hydrogen ion concentration (mmol/l) in seven duodenal ulcer patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interprandial</td>
</tr>
<tr>
<td></td>
<td>8–9 am</td>
</tr>
<tr>
<td>Placebo</td>
<td>72±0±10±0</td>
</tr>
<tr>
<td>TDS§</td>
<td>61±3±11±5</td>
</tr>
<tr>
<td>Cimetidine‡</td>
<td>57±8±11±4</td>
</tr>
<tr>
<td>TDS§ plus cimetidine‡</td>
<td>80±4±2±9±4§</td>
</tr>
</tbody>
</table>

*Hydrogen ion concentration during the three hour interprandial
periods (11 am–2 pm and 4 pm–7 pm) and the 11 hour nocturnal
period (9 am–8 am) is the average hydrogen ion concentration
secreted during each of these periods.

§0.5 mg transdermal scopolamine (TDS) patch applied behind ear
at 8 pm the evening before the study.

‡400 mg cimetidine by mouth at 9 am and at 7 pm.
*9p<0.05 versus placebo and TDS alone.

Cimetidine and the combination of cimetidine plus
transdermal scopolamine reduced hydrogen ion con-
centration significantly during both interprandial
periods and during the night. The drug combination
was not more effective than cimetidine alone in
decreasing hydrogen ion concentration.

Discussion

By combining the techniques of gastric aspiration²
and in vivo intragastric titration,¹ we have de-
veloped a method for measuring acid secretion
throughout a 24 hour period, including acid se-
cretion in response to three meals, the periods after
the meals and during the night. We have previously
applied this technique for comparison of 24 hour
acid secretion in normal subjects and duodenal ulcer
patients and to evaluate the effect of cimetidine and
parietal cell vagotomy on 24 hour acid secretion.⁷

Data from previous studies¹¹ suggest that anti-
muscarinic drugs reduce basal and nocturnal acid
secretion by about 40–60%. Because two recent
reports indicated that transdermal scopolamine re-
duced basal acid secretion by 65%π and nocturnal
acid secretion by 75% in duodenal ulcer patients²
and because the drug is commercially available for
the prevention of motion sickness, we felt it was
important to study and report the effect of trans-
dermal scopolamine on acid secretion throughout
an entire 24 hour period in duodenal ulcer patients.

While transdermal scopolamine reduced 24 hour
acid secretion slightly in six out of seven patients, we
could not confirm a significant inhibitory effect of
transdermal scopolamine on basal, interprandial or
nocturnal acid secretion nor did we find a significant
effect of the compound on gastric juice volume or
hydrogen ion concentration (Tables 2–4). Fur-
thermore, transdermal scopolamine reduced total 24
hour acid secretion by only 9±5% (range, –18 to
23%, p>0.05). Transdermal scopolamine also did
not enhance the inhibitory effect of cimetidine on
acid secretion (Table 1 and Figure) as has been
reported with other antimuscarinic drugs.⁵⁶

We are uncertain why our data disagree with
other recent reports.¹² Possibilities include differ-
ences in patient selection or in study design. For
example, placebo and transdermal scopolamine
were administered in random order in our study,
whereas the placebo (control) experiment had
always preceded transdermal scopolamine in one of
the previous studies.² This was not true in the other
study, however, which was carried out in a double
blind randomised manner.¹ The 24 hour study
design we used would seem to negate any possible
effect of the normal diurnal variation in acid
secretion which could effect interpretation of results

Richardson and Feldman

Gut: first published as 10.1136/gut.27.12.1493 on 1 December 1986. Downloaded from
with antisecretory drugs.12 Our experience with this
preparation in patients with duodenal ulcer disease
suggests that the amount of scopolamine absorbed
through the skin (according to the manufacturer,
around 7 μg/h or 0.1 μg/kg/h) is insufficient to cause
a significant reduction in gastric acid secretion,
gastric juice volume, or hydrogen ion concentration,
or to enhance the inhibitory effect of H\textsubscript{2}-receptor
agonists.

This work was supported by grant AM 16816 from
the National Institutes of Health, by the Veterans
Administration, and by a grant from Ciba-Geigy
Corporation.

The authors wish to thank Cora Barnett, Mary
Walker, Julie Oliver-Touchstone, Denise Freeman,
Tyree Anders, Shirley Gabriel, and Brunette Moore
for expert technical assistance; Pat Ladd for art
work; Vicky Slagle for preparing the manuscript;
and the patients who volunteered for these lengthy
experiments.

References

1 Gleiter CH, Antonin KH, Brodick T, Bieck RP,
Breucha G. Transdermal scopolamine and basal acid

2 Walt RP, Kalman CJ, Hunt RH, Misiewicz JJ. Effect
of transdermally administered hyoscine methobromide
on nocturnal acid secretion in patients with duodenal

3 Kerr GD. Cimetidine: twice daily administration in
duodenal ulcer – results of a UK and Ireland mul-
ticentre study. In: Baron JH, ed. \textit{Cimetidine in the 80's}.

4 Eckardt V. Cimetidine: twice daily administration in
duodenal ulcer – results of a European multicentre
study. In: Baron JH, ed. \textit{Cimetidine in the 80's}.

5 Feldman M, Richardson CT, Peterson WL, Walsh JH,
Fordtran JS. Effect of low-dose propantheline on food-
stimulated gastric acid secretion: comparison with an
“optimal effective dose” and interaction with

6 McCarthy DM, Hyman PE. Effect of isopropamide
on response to oral cimetidine in patients with Zollinger-

7 Feldman M, Richardson CT. Total 24-hour gastric acid
secretion in patients with duodenal ulcer: comparison
with normal subjects and effects of cimetidine and
parietal cell vagotomy. \textit{Gastroenterology} 1986; \textbf{90}:
428–33.

8 Feldman M. Comparison of acid secretion rates mea-
sured by gastric aspiration and by \textit{in vivo} intragastric
titration in healthy human subjects. \textit{Gastroenterology}
1979; \textbf{76}: 954–7.

9 Moore EW, Scarlata RW. The determination of gastric
acidity by the glass electrode. \textit{Gastroenterology} 1965;

10 Fordtran JS, Walsh JH. Gastric acid secretion rate and
buffer content of the stomach after eating. Results in
normal subjects and in patients with duodenal ulcer. \textit{J
Clin Invest} 1973; \textbf{52}: 645–57.

11 Dotevall G, Schroder G, Walan A. Effect of poldine,
glycopyrrolate and 1-hyoscyamine on gastric secretion

12 Moore JG. Englert E. Circadian rhythm of gastric acid