Extracorporeal shock wave lithotripsy of pancreatic stones

T SAUERBRUCH, J HOLL, M SACKMANN, AND G PAUMGARTNER

From the Medical Department II, Klinikum Grosshadern, University of Munich, Munich, Federal Republic of Germany.

SUMMARY Extracorporeal shock wave lithotripsy of pancreatic stones was performed in eight patients with chronic pancreatitis and a dilated duct system harbouring stones 5 to 20 mm (\times 10 (SD) 5 mm) in diameter. After endoscopic sphincterotomy of the pancreatic orifice the stones were disintegrated by shock waves under fluoroscopic control using a kidney lithotripter (Dornier HM3). The procedure was well tolerated by all but one patient, who had a mild pancreatic attack immediately after lithotripsy. Clearance of the pancreatic duct systems from the larger stones was achieved in seven of eight patients. Half of the patients showed no improvement in the intensity and frequency of pain. The other patients had a marked amelioration of symptoms, however, both immediately and during a mean follow up interval of 11 (eight) months. A selective combined approach by endoscopy and extracorporeal shock wave lithotripsy for the treatment of pancreatic stones seems promising.

Although pancreatic lithiasis occurs in less than 1% of an unselected autopsy population, in alcoholic chronic pancreatitis the incidence of ductal calcification reaches up to 90%. Two patterns of localisation are observed: firstly, cases where the main ducts are involved and secondly those in which only small ducts and acini are calcified. Solitary stones predominate when the main ducts are involved. These stones are mainly localised in the duct of Wirsung within 2 to 4 cm of the ampulla of Vater. This location makes them potentially amenable to endoscopic procedures such as extraction after papillotomy of the pancreatic sphincter. Endoscopic extraction of stones or other drainage procedures may improve pain attacks of these patients. Extraction, however, may be hindered by the size of the stones in relation to the anatomy of the pancreatic ducts. Encouraged by the fact that we observed no cases of severe shock wave-induced pancreatitis when treating common bile duct stones, we tested the feasibility of extracorporeal shock wave lithotripsy (ESWL) of pancreatic stones. Our first report of a successful stone extraction after extracorporeal shock wave lithotripsy has been followed by a preliminary report of a larger series in Belgium.

In the present paper we describe our experience with shock wave lithotripsy of pancreatic stones in eight patients with special emphasis on stone clearance, side effects and relief of symptoms.

Methods

Patients All patients (Table 1) had recurrent attacks of pancreatic pain and were admitted to our hospital for assessment of their suitability for lithotripsy. According to the Cambridge classification, retrograde pancreateography showed moderate or marked changes in the pancreatic ductal system. All patients had decreased exocrine pancreatic function (tubeless pancreolauryl or fluorescein dilaurate secretory function test: 9.2 (SD) 2.5%). Clinical data of the patients are shown in Tables 1 and 2. The current symptom status of the patients was assessed by telephone and a self-administered questionnaire.
Extracorporeal shock wave lithotripsy of pancreatic stones

Table 1 Symptoms and radiological signs before and after ESWL.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Before ESWL</th>
<th>After ESWL</th>
<th>Before ESWL</th>
<th>After ESWL, at discharge</th>
<th>Follow up time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>8</td>
<td>Head, 8 mm stone and small calcifications</td>
<td>Head, small calcifications</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>Head, 8 mm stone</td>
<td>Head, 8 mm stone</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>none</td>
<td>Head, 10 mm stone</td>
<td>No more calcifications</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>none</td>
<td>Head, 2 stones (5, 8 mm) and small calcifications</td>
<td>Head, small calcifications</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>30</td>
<td>Head, 8 mm stone, further calcification whole pancreas</td>
<td>Calciﬁcation, whole pancreas</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>Head, 5 mm stone</td>
<td>No calcifications</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>30</td>
<td>Pancreatogram 3 stones</td>
<td>No stones</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>none</td>
<td>Head, 2 or 3 stones, (8-10 mm)</td>
<td>No calcifications</td>
<td>2</td>
</tr>
</tbody>
</table>

ESWL = extracorporeal shock wave lithotripsy.

Extracorporeal shock wave lithotripsy of pancreatic stones

Patients were treated in supine position with slight elevation of the left shoulder (Fig. 1) in a Dornier kidney lithotripter (HM3) with a spark gap (18 kV) or an electromagnetic generator (11–15 kV). Four patients were treated in one session, three patients in two sessions and one patient in three sessions (Table 3). The mean number of shock wave discharges was 1356 (647) applied within 36 (10) minutes. Four treatments were performed under general anaesthesia and eight under intravenous analgesia using alfentanil.

All patients received an endoscopic sphincterectomy of the pancreatic orifice before shock wave treatment.

The radio-opaque stones were located in the shock wave focus by ﬂuoroscopy without a nasopancreatic drainage tube in ﬁve patients. Three patients required a nasopancreatic tube for instillation of contrast medium to visualise and localise the stone during the treatment. Retreatments were done for the following reasons: failure of disintegration of the stones; insuﬃcient disintegration of the stones, and disintegration of further stones that had migrated into the main pancreatic duct after previously successful extracorporeal shock wave lithotripsy.

Results

Side effects of shock wave lithotripsy

There were no major adverse effects or major

Figure 1 Extracorporeal shock wave lithotripsy of pancreatic stones. The patient is partly immersed in the water bath of an HM3 (Dornier) in supine position. Shock waves enter the body from the rear. The shock waves are reﬂected by an ellipsoidal reﬂector to a focal area in which the stone is positioned by ﬂuoroscopy.
complaints (Table 3). There was no increase in the mean amylase concentration (×104 (105) v ×108 (97) U/l) when measured the day before and after extracorporeal shock wave lithotripsy. The leucocytes count slightly increased one day after extracorporeal shock wave lithotripsy, but this increase was not statistically significant (×5888 (3134) v 10 192 (5883) cells/µl). Two patients complained of slight flank or abdominal pain after extracorporeal shock wave lithotripsy. Only one patient (no 1, Table 3) had a raised temperature or leucocytosis and aggravation of abdominal pain together with slight peripancreatic oedema, as assessed by computed tomography within the first three days after treatment. Symptoms spontaneously resolved after several days. In all other patients, repeated follow-up ultrasound examinations showed no morphological changes in the pancreas itself or in the peripancreatic region.

STONE CLEARANCE

Treatment failed completely in one patient (no 2), who had an impacted stone in the head of the pancreas despite three sessions performed within one month. In the seven other patients, disintegration of the stones was achieved. Patients required endoscopic extraction of remaining fragments after extracorporeal shock wave lithotripsy for complete clearance from the ductal system. Total clearance of stones and fragments after extracorporeal shock wave lithotripsy was observed in four of the eight patients (Table 1). In three patients, large stones could be removed from the main pancreatic duct, but small calcifications persisted in the peripheral branches of the gland (Table 1).

RELIEF OF SYMPTOMS

During a mean follow up time of 11 (8) months, three of the eight patients had complete relief from abdominal pain attacks (Table 1). In one patient (no 1) symptoms improved after treatment, four patients had no change. In two of these patients without change the cause was probably the pancreatic morphology. In one patient (no 2), the stone did not respond to the treatment at all, and in the second patient (no 6) a small calculus was successfully shattered. The fragments could not, however, pass into the duodenum because of a narrow and tight pancreatic ductal stenosis. In another patient (no 5), a solitary 8 mm stone was successfully treated; however, there were further calcifications distributed along the whole gland. The fourth patient (no 7, Fig. 2) in whom symptoms persisted had large stones in the main pancreatic duct which were all successfully cleared from the pancreas after extracorporeal shock wave lithotripsy. This patient was readmitted with a recurrent pancreatitis pain attack after heavy alcohol intake. The other patients with alcoholic pancreatitis had been abstinent before extracorporeal shock wave lithotripsy.

Discussion

According to Sarles\(^{10}\) calcifying pancreatitis is accompanied by the formation of protein plugs. A decrease in a ‘pancreatic stone protein’ in the pancreatic juice acting as a calcium stabiliser is thought to play an important role. These plugs may act as a nucleus for calcium carbonate precipitation, leading to stone formation and impaction with
Fig. 2 Three large stones (arrows) in the pancreatic duct in a patient (no 7) with chronic alcohol pancreatitis before (a) and after extracorporeal shock wave lithotripsy, with subsequent endoscopic extraction of the fragments (b).
Fig. 3 Two to three calcified stones in the head of the pancreas in a patient with idiopathic chronic pancreatitis: (a) stones shown in the plain abdominal film, stones (arrows) in the retrograde pancreatogram before (b), after ESWL and disintegration (c) and after endoscopic extraction of the fragments (d).

Complete or incomplete outflow obstruction of the pancreatic juice. Obstruction, in turn, may enhance the further development of lesions and symptoms.

Patients with chronic calcifying pancreatitis undergoing surgery for intractable pain may have a decreased survival time because of early postoperative mortality or because of a deleterious effect of surgery on long-term survival. Therefore, methods that would help to avoid surgery should be explored in these patients.

In this group of eight patients we could show that pancreatic stones can be disintegrated successfully and without major adverse effects in the majority of patients, in accordance with our results with bile duct stones and also those of Cremer et al. The possibility of stone fragmentation enables the non-surgical
clearance of stones much larger than those normally amenable to endoscopic procedures, especially when ductal strictures prevent stone removal. In three of our patients, successful extraction of the stones was accompanied by a dramatic relief of pain. This result, however, could not be predicted by the pattern of calcification and did not necessarily correlate with the success of the extracorporeal shock wave lithotripsy treatment. For example, one patient (Fig. 2) with complete clearance of fragments and stones showed no improvement.

In addition to the beneficial effect on recurrent pain attacks in some patients, it may be speculated that a drainage procedure such as sphincterotomy and extraction of a large duct stone may facilitate spontaneous regression of persisting small pancreatic calcifications.12

Our results encourage clinical trials of extracorporeal shock wave lithotripsy in patients with stones in the pancreatic duct.

This work was presented in abstract form at the meeting of the American Gastroenterological Association, Washington, 1989.

We are indebted to Ms M Bäuer for secretarial help.

References