Osler’s disease is not a telangiectasia but a tumour

Str.—I have read with great interest the instructive article by Zentler-Munro et al.1 about an association of vascular abnormalities and hepatic fibrosis in Osler’s disease. Above all, I was impressed by their photographs. In Figure 3, there are dilated vascular spaces practically devoid of erythrocytes and still other ones full of red blood cells. I covered the latter by white stain and looked with astonishment how few hepatocytes remained from original hepatic tissue. To all appearances, a tissue of hepatic lobules was almost destroyed by vessels the abnormal character of which reminds of tumoral growth instead of telangiectases.

As we believe that hyperplastic capillaries are involved in a pathogenesis of fibrosis, I looked for them in the article of Zentler-Munro et al.1 Having been unable to identify them, I turned to other articles concerning Osler’s disease. I found them in an article by Tedesco et al who had described an angiomma in the submucosa of a stomach and telangiectases associated with fibrosis in the liver.

Further, I was attracted by an article by Nódle2 who had studied cutaneous telangiectases. His outstanding photographs of pathologic vessels were complemented by nonhaemangiomatic mesenchymal cells (Figs 2, 3, 4, 5, 6, 7, 8) reminding me immediately of similar vessels that I had observed when I studied cutaneous vascular tumours. At that time, I described hyperplastic capillaries composed of endothelial undifferentiated endothelial cells and situated in the vicinity of a capillary haemangioma, a haemangiopericytoma, and an angioleiomyoma. The capillaries were so similar to sweat glands that a careful morphological analysis was needed in order to distinguish these two structures. These hyperplastic capillaries could give rise: (a) to long narrow strips of smooth muscle tissue by an in situ differentiation of their cells into smooth muscle cells; to pathological muscular vessels by a short distance centrifugal migration and a differentiation of their cells into vascular wall muscular cells; and (c) to ecstatic capillaries surrounded by fibroblast-like cells by a migration of their cells into the extracellular space and their differentiation there.

A similarity between the vessels described by Nódle3 and the vessels I have observed suggests that Nódle described in reality tumoral lesions. I looked, therefore, for hyperplastic capillaries in his article. I found them in Figs 3, 4, 5c, 6d, 7, 8. Nódle does not mention them because he considers them to be sweat glands. Why I believe that at least some of these structures are hyperplastic capillaries: (1) a number, a location, and a morphology of pathological muscular vessels indicate that they are not formed by remodelling pre-existing normal vessels; (2) some of them are collapsed and undergoing involution suggesting their high turnover; (3) there are structures clearly recognisable as mesenchymal but similar to sweat gland tubules (Figs 3, 4, 6d, 7, 8) — a large tubule on the right side, 8 — on the right side; (4) referring to my previous observation, endothelial cells in the ‘sweat glands’ often degenerate, most probably because of hypoxia, and their nuclei form clusters leaving empty space in their vicinity (Fig 7 — in the upper right corner); (5) endothelial cell nuclei often possess an elongated cell form. When they are oriented longitudinally hyperplastic capillaries manifest histopathological patterns incompatible with genuine sweat glands (Fig 7 — in the upper right corner). Finally, there is a remnant of an original hyperplastic capillary composed of several layers of undifferentiated epithelial endothelial cells (Figs 9, 10). Because there is no other pathologic process present, the remnant is not a reactive hyperplasia but a manifestation of tumour growth.

If Osler’s disease is a tumoral process antiangiogenesis may be tried in its therapy. This proposition is supported by a successful treatment of this disease by metronidazole and has been published.

There are several other diseases which present themselves as telangiectases but derive from hyperplastic tumoral capillaries. They are the senile haemangioma, Cutis marmorata telangiectatics,4 and generalised essential telangiectasia (unpublished personal observation).


Oesophageal carcinoma in Sri Lanka

Str.—With reference to the article by Sagar (Gut 1989; 30: 561–4), I would like to add that Sri Lanka was a transit point in the old silk route between China and Rome. Marco Polo also stopped over in Sri Lanka (then identified by him as Selan) on his return from China.1 On the diet of the natives of the northern region of Ceylon, seven centuries ago, Marco Polo wrote, ‘They have no grain other than rice. They have sesame, from which they make oil. They live on milk, flesh and rice and have wine made from trees’.

The wine he referred to, is known as ‘kailu’ in Tamil language, and is produced from the palmyrah palm Borassus flabellifer.

Stephen and Uragoda2 have reported that cancer of the oesophagus is the commonest among the patients admitted to thoracic units in Ceylon, and Ceylon is one of the few countries with a high incidence of both oral and oesophageal carcinoma. In China, the male-female ratio of patients with oesophageal cancer is reported as 2:1. But in Sri Lanka, the incidence of oesophageal carcinoma is higher among women than men.

1 S KANTHA
Department of Physiology and Biochemistry,
Medical College of Pennsylvania,
Philadelphia, PA 19129, USA


Ranitidine noce (Rhs) v ranitidine mane and noce (Rbid)

Str.—We wish to comment on the abstract by Dobrilla et al (Gut 1989; 30: A726) stating that there is no significant difference between Rhs and Rbid healing rate at two weeks but the authors did not mention which statistical test and significance level they used.

We found, however, using the χ² test, without Yates correction, a significant difference between the two treatments at two weeks (χ² = 5.2 resulting in a p value < 0.05).

It would be interesting to know why according to the authors the difference in healing rate was not significant at two weeks.

Reply

Str.—With regard to the letter of VanVilder and Jan Plas, the comment of these authors is correct but there is an error in our abstract.

In fact, while the reported ranitidine bid healing percentage by week two is correct (64–2%), the absolute figures are 102/159 and not 107/159, as indicated. Using the χ² test on the correct number of patients, the difference between the two treatment groups proves to be statistically not significant.

Further details can be found in the full paper which now has been published. (Clin Trial J 1989; 25: 87–8.

G DOBRILLA
Department of Gastroenterology,
General Hospital, Bolzano, Italy

H pylori and duodenal ulcer

Str.—Dr Carrick and colleagues are to be congratulated on quantifying in their 137 subjects the strength of the risk factor for duodenal ulceration (relative risk = 51) of duodenal infec-