Breath hydrogen response to lactulose in healthy subjects: relationship to methane producing status

D Cloarec, F Bornet, S Gouilloud, J L Barry, B Salim, J P Galmiche

Abstract
In order to assess the relationship between methane (CH₄) producing status and the breath excretion of hydrogen (H₂) in healthy subjects, breath CH₄ and H₂ were simultaneously measured for 14 hours after oral ingestion of 10 g lactulose in 65 young volunteers. Forty were breath CH₄ producers and 25 were not. Statistically significant differences were observed between both groups, with lower values for CH₄ producers recorded for the following parameters: fasting basal value of breath H₂ (8.1 (4.9) v 5.2 (3.7) ppm, p<0.05), mouth-to-caecum transit time (68 (24) v 111 (52) min, p<0.005), and breath H₂ production measured as area under the curve 13.1 (6.9) v 8.8 (3.8) 10⁻⁶ ppm/min, p<0.02). There was no significant correlation between individual production of breath H₂ and CH₄. These results indicate that the response to lactulose depends on breath CH₄ producing status. In clinical practice, defining normal values of mouth-to-caecum transit time without knowledge of breath CH₄ producing status may lead to misinterpretation of the H₂ breath test.

The hydrogen (H₂) and methane (CH₄) produced in the human body derive entirely from colonic anaerobic bacterial fermentation. While most of these gases are consumed on site or excreted in flatus, the part expelled by the lungs can be easily collected and measured by end-expiratory sampling.¹¹ H₂ production increases when a fermentable carbohydrate is completely absorbed in the small intestine, forming the basis for the use of the H₂ breath test. This non-invasive procedure has been extensively used in clinical practice¹²,¹³ and pharmacological studies¹⁴ to measure mouth-to-caecum transit time. It has also been proposed as a semi-quantitative method for evaluating intestinal malabsorption of carbohydrates.¹⁴,¹⁵ The recent development of a simple gas analyser not only offers the opportunity to measure breath H₂ but breath CH₄ as well. Although the substrates for CH₄ production are not yet fully identified,¹⁶ it has been shown that in Caucasian adults, only 30%–50% are breath CH₄ producers, whereas 90%–98% excrete breath H₂.¹⁷,¹⁸,¹⁹ In most previously published investigations, however, little attention has been paid to the relationship between breath CH₄ producing status and the H₂ excretion profile after lactulose administration. In a previous study evaluating starch malabsorption of pasta,¹⁶ we observed different patterns of H₂ production according to breath CH₄ producing status, a finding which has also been described in preliminary studies by other authors.¹⁶,¹⁷,¹⁹ This prompted us to prospectively assess the relationship between breath CH₄ producing status and the breath excretion of H₂ in healthy subjects.

Methods

SUBJECTS
Sixty five subjects (32 men, 33 women) ranging from 19 to 30 years (mean 22.4 (2)) were selected from a population of healthy volunteers without known disease and free from gastrointestinal symptoms as previously tested in our laboratory. In addition, their breath CH₄ producing status was already known. Forty were breath CH₄ producers as defined below. Their breath samples were compared with those of 25 healthy controls who were breath CH₄ non-producers. All volunteers were French born Caucasians of similar ethnic origin. As enemas, laxatives, and antibiotics can affect the colonic microflora and, hence, the production of intestinal gas, any individual receiving these treatments within three months before the study was excluded. All subjects gave their informed consent to the study protocol which had been approved by the Ethics Committee of our hospital.

STUDY DESIGN AND BREATH ANALYSIS
The effect of a single orally administered of 10 g lactulose (Duphalac®, Duphar Laboratories, Villeurbanne, France) dissolved in 100 ml cold water was studied for 14 hours in the 65 selected subjects for breath H₂ and CH₄ production. Two evening meal preceding the morning lactulose test was standardised to contain a low level of indigestible material¹⁶,¹⁷ and consisted of fish, white rice, and a soft cheese; water was freely permitted. After a 12 hour fasting period, the lactulose test was performed at 09.00 hours after suitable oral hygiene (careful mouthwashing with a 1% chlorhexidine solution; Gival®®, Norgan Laboratories, Paris, France) to reduce oropharyngeal microfloral activity.¹⁶,¹⁷

Breath samples were collected at 15 minute intervals for 30 minutes before lactulose ingestion, every 10 minutes for the first two hours, and then every 15 minutes for the next 12 hours thereafter. During the test, subjects were forbidden to eat, smoke, or take exercise.¹⁶ Alveolar air samples were obtained after a normal inspiration, by having the subjects exhale through a mouthpiece into two bags connected by a three-way valve. When the first 500 ml expiratory air filled one plastic bag, the end alveolar air was then collected in a second bag (1-1 rubber anaesthesia bag adapted with a one way valve). The end alveolar air was then immediately transferred into 50 ml plastic...
TABLE

CH₄ producing status and results of H₂ breath test in healthy subjects

<table>
<thead>
<tr>
<th></th>
<th>CH₄ non-producers (n=25)</th>
<th>CH₄ producers (n=40)</th>
<th>Total (n=65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>22 (0-9)</td>
<td>22 (3-7)</td>
<td>22 (4-7)</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>15/10</td>
<td>17/23</td>
<td>32/33</td>
</tr>
<tr>
<td>Fasting H₂ production (10³ ppm)</td>
<td>6.5 (4.1)</td>
<td>5.2 (3.7)</td>
<td>6.3 (4.4)</td>
</tr>
<tr>
<td>Mouth-to-caecum transit time (min)</td>
<td>48 (15)</td>
<td>87 (40)</td>
<td>81 (47)</td>
</tr>
<tr>
<td>Mouth-to-caecum transit time (min)</td>
<td>48 (15)</td>
<td>87 (40)</td>
<td>81 (47)</td>
</tr>
<tr>
<td>H₂ peak (min)</td>
<td>180 (80)</td>
<td>209 (98)</td>
<td>197 (92)</td>
</tr>
<tr>
<td>H₂ concentration (1/10 ppm)</td>
<td>13 (1)</td>
<td>8.8 (3.8)</td>
<td>10.6 (5.7)</td>
</tr>
<tr>
<td>Time for H₂ return to basal concentration (min)</td>
<td>564 (178)</td>
<td>573 (137)</td>
<td>569 (154)</td>
</tr>
<tr>
<td>Duration of H₂ production (min)</td>
<td>149 (77)</td>
<td>462 (120)</td>
<td>476 (146)</td>
</tr>
<tr>
<td>H₂ concentration at 840 min (ppm)</td>
<td>4.9 (3.2)</td>
<td>3.0 (2.1)</td>
<td>3.8 (2.8)</td>
</tr>
</tbody>
</table>

Results are expressed as mean (SD). See Methods for definition of CH₄ producing status.

*p<0.05 v CH₄ producers; *p=0.005 v CH₄ producers; *p<0.02 v CH₄ producers.

Results

CH₄ production

- Defined as an increase of H₂ greater than 5 ppm above FBH₂ before the first 30 minutes.
- H₂ mouth-to-caecum transit time was defined as the time from the beginning of lactulose intake until the period just before the initial increase above fasting levels of 10 ppm or more H₂ where this increase was sustained.
- As the phase of the menstrual cycle (luteal v progestational phase) has been shown to modify the duration of the mouth-to-caecum transit time, this variable was studied in each woman.

BREATH TEST

Demographic characteristics of the subjects and results for the H₂ breath test are summarised in the Table. Four subjects (6-1%) failed to produce significant amounts of breath H₂ after 10 g lactulose administration (ΔH₂<20 ppm). They were all breath CH₄ producers excreting large amounts of CH₄ (mean FBCH₄ 25-2 (12 ppm). Hence, breath H₂ production was analysed in only 61 subjects (25 CH₄ non-producers, 36 producers).

Mean breath CH₄ concentrations in the control group and breath CH₄ producers are shown in Figure 1. No early H₂ peak was observed in the 61 subjects; all values related to basal concentrations during the 14 hour test period.

Mouth-to-caecum transit times are shown in Figure 2. Although there was considerable overlap between the individual values measured in the two groups, the mean mouth-to-caecum transit time was significantly longer (p<0.005) in breath CH₄ producers. In this latter group, 17 subjects were above the highest value observed in the controls. No statistically significant difference was observed according to sex or phase of the menstrual cycle. H₂ production (AUC) was significantly lower in breath CH₄ producers (p<0.05) than in the control group (Table).

Figure 1: Breath H₂ concentrations (mean (SEM)) in CH₄ non-producers (n=25) and producers (n=36; 4 CH₄ producers not represented after fasting to produce H₂) after oral administration of 10 g lactulose.

The H₂ and CH₄ concentration in breath samples were determined simultaneously with a Micro Lyzer DP gas chromatograph (Quintron Instrument Company, Milwaukee, WI) using a molecular sieve column (12' Hysep Q, 60/80 mesh). Dry air was used as the carrier gas at a flow rate of 40 ml/minute. The chromatograph was calibrated with a H₂ and CH₄ reference mixture in compressed air (Quingas®). Results were expressed as parts per million (1 ppm ≈ approximately 0.05 mmol/l for H₂ and CH₄). For both gases, the smallest detectable concentration was 2 ppm with a linear accuracy response range of 2-150 ppm.

Breath CH₄ concentrations were taken as the difference between the result of a breath sample and the room air concentration; breath CH₄ producing status was defined as a mean CH₄ breath sample concentration greater than 2 ppm above that in ambient air. This criterion was based on the sensitivity and reproducibility of the method used.

The fasting breath H₂ (FBH₂) and CH₄ (FBCH₄) concentrations used were the mean of the three samples before lactulose ingestion. Breath H₂ producing status was defined as the ability of a subject to produce an increase in breath H₂ of greater than 20 ppm above baseline values (ΔH₂) at one or more breath collections after lactulose ingestion. An early H₂ peak was observed in the 61 subjects; all values related to basal concentrations during the 14 hour test period.

H₂ BREATH TEST

Demographic characteristics of the subjects and results for the H₂ breath test are summarised in the Table. Four subjects (6-1%) failed to produce significant amounts of breath H₂ after 10 g lactulose administration (ΔH₂<20 ppm). They were all breath CH₄ producers excreting large amounts of CH₄ (mean FBCH₄ 25-2 (12 ppm). Hence, breath H₂ production was analysed in only 61 subjects (25 CH₄ non-producers, 36 producers).

Mean breath CH₄ concentrations in the control group and breath CH₄ producers are shown in Figure 1. No early H₂ peak was observed in the 61 subjects; all values related to basal concentrations during the 14 hour test period.

Mouth-to-caecum transit times are shown in Figure 2. Although there was considerable overlap between the individual values measured in the two groups, the mean mouth-to-caecum transit time was significantly longer (p<0.005) in breath CH₄ producers. In this latter group, 17 subjects were above the highest value observed in the controls. No statistically significant difference was observed according to sex or phase of the menstrual cycle. H₂ production (AUC) was significantly lower in breath CH₄ producers (p<0.05) than in the control group (Table).

CH₄ production

In the CH₄ producers, the mean FBCH₄ concentration was 14.3 (8.3) ppm. The evolution of breath CH₄ concentration observed in the two groups is shown in Figure 3.

Among the 36 breath H₂ and CH₄ producers, 30 subjects (83%) showed an increase in CH₄ production after lactulose had reached the
caecum at the time t_i. In these 30 subjects, the CH4 AUC was 0.4 (0.5) 10^7 ppm/min from lactulose administration (ti-mouth-to-caecum transit time) to t_i and increased to 1-1 (0.9) 10^7 ppm/min from t_i to ti-mouth-to-caecum transit time (p<0.0005). In 11 breath CH4 producers (27.5%) a transient disappearance in CH4 production was observed, generally at the end of the test (mean 567 (180) min). This decline was generally associated with a low level of H2 production.

Breath CH4 concentrations were always below 3 ppm during the first 10 hours in control subjects; a delayed increase (Fig 3) occurred in 13 subjects (52%), with no return to basal values during the experimental period.

Correlation between breath H2 and CH4 production

No significant correlation was found between the H2 AUC and either the whole CH4 AUC (n=40) or the CH4 AUC after lactulose had reached the caecum (n=36). Individual patterns of excretion curves for breath H2 and CH4 tended to be either that of a high H2 and low CH4 or that of a high CH4 and low H2. No subject was both a high H2 and high CH4 producer.

Discussion

While the definition of CH4 producing status dates back to the introduction of the breath test method, the criteria used to define a subject as a CH4 producer has varied considerably with time. Initially, Bond et al.5 arbitrarily proposed that only those subjects with breath CH4 concentrations greater than 1 ppm above atmospheric CH4 be designated as CH4 producers. A single breath sampling, however, may fail to detect an average of 18% of the breath CH4 producers in a given population.11 More recently, McKay et al.19 have shown that all healthy subjects may produce CH4, though production of the gas appears in breath only after reaching a certain threshold. These investigators defined a CH4 producer as a subject emitting at least 2 ppm above room air concentration, based on the sensitivity and reproducibility of the method used. In our study, the smallest detectable CH4 concentration was 2 ppm; thus, CH4 producers were defined as subjects producing mean CH4 concentrations after four breath samples of greater than 2 ppm above those in ambient air.

FBH2 in our subjects was relatively low in comparison with levels found in a previous study.30 These results are, however, in agreement with data obtained by other investigators who showed that an evening meal containing a low level of indigestible carbohydrates before breath testing led to reduced FBH2 concentrations.27,28 Like Bjorneklett and Jenssen,36 our breath CH4 producers showed lower FBH2 values than breath CH4 non-producers. Previous studies10,20 have indicated that FBH2 measurements may be useful for the diagnosis of bacterial overgrowth and coeliac disease, but the influence of CH4 producing status was not examined.

Reports of the incidence of non-H2 producers range from 0% to 27%31,20,21 depending on the criteria used to define the absence of breath H2 production. Failure to produce breath H2 after the 10 g lactulose ingestion was infrequent in our population sample (6-1%). Here again, the definition of a breath H2 producer could explain these variations. For instance, in one recent study28 where ability to produce H2 was defined as an increase in breath H2 to greater than 20 ppm within four hours after ingestion of 10 g lactulose, 21% of subjects were found to be non-producers. Upon using similar criteria, 15% of our CH4 producers would be non-H2 producers. This indicates that the lactulose breath test must be extended by at least six hours (Fig 2) as H2 increases of about 20 ppm can occur with a delay, especially in CH4 producers. As in a previous study,28 we found that our four H2 non-producers all excreted large amounts of CH4.

After ingestion of a meal, a so called early rise in breath H2 concentrations has been described19 with a subsequent return to basal level; this early peak thus precedes the actual peak caused by carbohydrate malabsorption. Various hypotheses have been proposed to explain this early increase. H2 production may be enhanced by the passage into the caecum of either ileal secretions or carbohydrates retained in the terminal ileum from a previous meal.28 Buccal fermentation, however, may well be a major determinant, with proper oral hygiene able to
eliminate this phenomenon. In our study, the evening meal contained little indigestible material and attention was paid to meticulous oral hygiene. These two precautions were sufficient to eliminate the 'early peak'.

The H₂ breath test is a simple, non-invasive method for measurement of mouth-to-caecum transit time, reflecting the arrival of the 'head' of the meal in the caecum. Although defined as the interval between meal ingestion and the detection of a significant and sustained rise in breath H₂ excretion,

there is no uniformly accepted recommendation concerning either the threshold increase in H₂ concentration or the dose of the lactulose load. Values of 10 ppm and 10 g, respectively, have been proposed by most investigators. In one study, CH₄ production was associated with slow colonic transit, but any apparent difference in mouth-to-caecum transit times between CH₄ producers and non-producers has previously not been reported. We are unable to explain this difference which may be related to lower H₂ production and/or different patterns in gut motility. In order to assess the impact of sex on the study parameters, the same percentage of women in luteal and progesterational phases was studied in each group. No significant difference in mouth-to-caecum transit times was noted between these phases.

Previous studies suggest that the absorption of carbohydrates can be quantified with reference to lactulose. In agreement with Bjørneklett and Jønssen using 33 g lactulose, our results showed a significant difference in breath H₂ production between CH₄ producers and non-producers after 10 g lactulose, but there was no correlation between breath H₂ and CH₄ production.

Breath CH₄ production has rarely been examined over an extended time period. In this 14 hour trial, we observed that 83% of CH₄ producers were able to excrete additional CH₄ after ingestion of 10 g lactulose. This increase in CH₄ has been observed previously with larger doses of lactulose.

The finding that breath CH₄ may almost disappear rapidly in breath CH₄ producers has been previously observed by Fritz and Siebert, though without explanation. Our observation of late CH₄ production in breath CH₄ non-producers has never been reported and might reflect modifications in colonic flora after 24 hour fasting.

Irrespective of the reasons for the observed differences between CH₄ producers and non-producers, these results appear clinically relevant. Indeed, ignoring these facts could lead to misinterpretation of mouth-to-caecum transit time in clinical practice or in the pharmacological assessment of prokinetic drugs. In the future, it is possible that determination of different thresholds of H₂ concentrations for the calculation of mouth-to-caecum transit time may help solve the apparent discrepancies between CH₄ producers and non-producers. For instance, in this study, the arrival of lactulose in the caecum was defined as a rise in the H₂ concentration of at least 10 ppm. Hence, at 70 minutes (mouth-to-caecum transit time in controls), the mean H₂ concentration was 18 ppm (FBH₂ = 8 ppm + 10 ppm). The corresponding increase in H₂ for CH₄ producers was 5 ppm (10 ppm—FBH₂ = 5 ppm) (Fig 1). Therefore, it is possible that the thresholds for the detection of lactulose in the caecum may have to be revised in accordance with CH₄ producing status. This approach would in fact require the use of a different method for the measurement of mouth-to-caecum transit time not based on H₂ production by colonic flora. Until new thresholds of H₂ concentrations are validated, we suggest limiting the use of the H₂ breath test to intra-individual comparisons (crossover design) after stratification of CH₄ producers and non-producers. The same restrictions apply to quantification of carbohydrate malabsorption in physiopathological studies.

We are grateful to Mr and Mrs F Shapiro (Syntaxis-Belgium) for editorial assistance with this manuscript.