in group C (6) ranitidine, 150 mg bid, 3 with Yates’ M220 combination and Wilson’s test. Two pair differences were used for statistical analysis.

Our results show there was a reduction in the percentage of patients with gastritis grade 4 and 3 put together, by the end of six weeks. The difference was substantial but not significant, in patients treated with CBS (before treatment: 50%, after treatment: 17%). The small number of patients in group C does not guarantee any relevant suggestion for this group. No differences were found though gastritis grading in any one of the studied group, before and after treatment.

There was a substantial but insignificant reduction in the percentage of HLO positive, grade 3 and 4 put together, by the end of six weeks. The difference was substantial but not significant, in patients treated with CBS (before treatment: 25% of CBS and 15% of sucrafate treated became HLO test negative. On the contrary, all the patients treated with ranitidine became HLO positive, grade 3 and 4, by the end of six weeks.

No significant differences were found in HLO test grading in any group of patients before and after treatment.

None of the drugs studied significantly improved CBS reduction substantially the percentage of patients with gastritis grade 4 and 3. Others have found CBS to significantly improve Helicobacter associated gastritis in patients with non- ulcer dyspepsia1 as well as in a mixed population of patients suffering from duodenal ulcer, gastric ulcer and non ulcer dyspepsia, by the end of four weeks treatment.3 This discrepancy could be caused by the rather small number of patients in our study. Another interesting finding was that two patients on sucrafate therapy became Helicobacter pylori negative, by the end of six weeks treatment.4 Others have found no influence of sucrafate on Helicobacter pylori. Our finding could be due to sampling error or perhaps the concomitant use of some other drugs that is, amoxicillin or metronidazole by these two patients.


Lectin binding sites in the jejunal mucosa of patients with gluten sensitive enteropathy

Stir, -- We have read with interest the article by Vecchi et al (Gut 1989; 30: 804-10) concerning the histochemical distribution of glycoconjugates investigated by lectins in the jejunal mucosa of patients with gluten sensitive enteropathy and subtotal villous atrophy. Four patients with coeliac disease and 10 patients with dermatitis herpetiformis were studied; in addition, some were obtained from patients suffering from irritable bowel syndrome, showing normal morphology were used as controls. Although our experience has been reported in a previous study this was not cited by Vecchi et al. In our study we have investigated the lectin binding sites in duodenojejunal mucosa from 119 coeliac children (67 with subtotal villous atrophy and 52 with partial villous atrophy after gluten free diet for 12 months) (age range 1-12 years); moreover, 16 biopsies obtained from infants with short stature and normal intestinal mucosa and nine specimens obtained from infants suffering from postenteritis syndrome were also utilised as normal and pathological controls.

It would be of interest to know the age of patients studies in the paper by Vecchi et al; in addition no information about the blood groups of patients is available in this study.

Comparisons can also be made in coeliac children. In coeliac children and adults, Coeliac mucosa is characterised by the absence of lectin binding sites, whereas normal mucosa shows a significant lectin binding pattern. Moreover, a positive lectin binding pattern in duodeno-jejunal biopsy of patients suffering from coeliac disease. In the normal mucosa, the binding sites are found mainly in the superficial epithelial cells and are characterised by the presence of lectin binding sites that are absent in the coeliac mucosa. In our study, we have observed a positive lectin binding pattern in the jejunal mucosa of patients suffering from coeliac disease. In the normal mucosa, the binding sites are found mainly in the superficial epithelial cells and are characterised by the presence of lectin binding sites that are absent in the coeliac mucosa. The latter phenomenon was not observed in the jejunal mucosa of patients suffering from coeliac disease. In the normal mucosa, the binding sites are found mainly in the superficial epithelial cells and are characterised by the presence of lectin binding sites that are absent in the coeliac mucosa.

First, while Barresi et al report the results obtained in a pediatric population,4 our series consisted of adult patients only. In our series, we have observed a positive lectin binding pattern in the jejunal mucosa of patients suffering from coeliac disease. In the normal mucosa, the binding sites are found mainly in the superficial epithelial cells and are characterised by the presence of lectin binding sites that are absent in the coeliac mucosa. Moreover, we have observed a positive lectin binding pattern in the jejunal mucosa of patients suffering from coeliac disease. In the normal mucosa, the binding sites are found mainly in the superficial epithelial cells and are characterised by the presence of lectin binding sites that are absent in the coeliac mucosa. Therefore, we contend that only patients without gastrointestinal symptoms and histologically normal intestinal mucosa must be chosen as normal controls, especially in studies assessing lectin binding sites in pathological tissues.

In pathological specimens, there is striking disagreement about the distribution of some lectins, in particular WGA was evident in our coeliac mucosa and pathological controls, whereas no reactivity was encountered in normal control mucosa. On the contrary, Vecchi et al reported no differences in the WGA pattern in pathological and normal control mucosa. As regards DBA distribution, Vecchi et al observed a significant decrease of goblet cells reactivity in mucosa with subtotal villous atrophy in comparison with controls and they suggested an incomplete observation of goblet cells; on the contrary we have documented the appearance of goblet cells reactivity in coeliac patients and pathological control mucosa. The DBA reactivity is considered a specific marker of human colorectal goblet cells,1 as also outlined by Vecchi et al; it is noteworthy that colorectal mucous cells contain acidic sulphated mucosubstances, which are absent in normal duodeno-jejunal mucosa, however, we have previously shown with high iron diamine – alcian blue pH 2:5 (HID-AB method), the presence of weak and strong acidic sulphomucins. This fact may be related to the different lectin found in our coeliac mucosa, suggesting the appearance of new specific lectin binding sites. Additional evidence on the appearance of sulphated glycoproteins was the finding of the PNA expression in our coeliac mucosa with regard to the normal and pathological control mucosa. The latter datum is another divergent point with negative findings by Vecchi et al in their control and pathological controls.

Finally, Vecchi et al suggest that further studies about the lectin binding pattern in the jejunal mucosa of patients with GSE on a gluten free diet would be useful. In the aforementioned paper, we have extensively studied the lectin binding pattern in 52 treated coeliac patients on a gluten free diet for at least 12 months; in particular, data and serological evaluations (comparable with those performed in our patients) should be considered as sufficient evidence to rule out the disease in our patients with diarrhoea as well as in their children with short stature.

Lectin histochemistry is a useful and interesting tool for the study of tissue glycoconjugates. One should keep in mind, however, the fact that the use of different fixatives and different times for processing techniques may affect the presence and availability for staining
of the carbohydrate side chains. Thus, we feel that data obtained using different methods should be compared very cautiously. In our hands, the use of formalin fixed tissues has given the most reproducible results.

As far as the persistence of changes in lectin binding pattern after gluten free diet, Barresi et al provide very interesting and exciting results. We agree that further studies on this matter are still needed, as the patients studied by Barresi after 12 months of gluten free diet still showed partial withdrawal. The persistence of changes observed by Barresi et al in these patients might in fact reflect the incompleteness of recovery rather than the expression of a primary defect.

M VECCHI
G TORGANO
R DE FRANCHIS
D AGAPE
G RONCHI
Instituto di Medicina Interna
Università di Milano, Italy


Gastroenterologists and nutritional support

Sir,—At the inaugural committee meeting of the Small Bowel/Nutrition Section of the British Society of Gastroenterology in September 1988 it was agreed that a survey should be undertaken to assess the degree of influence and/or participation of BSG members in the practice of clinical nutrition support in the United Kingdom. A brief questionnaire was circulated to 1500 BSG members in December 1988. All replies until June 1989 were collected and 108 completed questionnaires were returned—a response rate of 11.2%. The breakdown of occupation of respondents is listed in the Table.

Ninety per cent of respondents were responsible for decision making for enteral nutrition of their own patients, but only 45% were responsible for decision making concerning total parenteral nutrition for their own patients. Eighty nine per cent of respondents were also responsible for enteral nutrition support of other clinicians’ patients, dropping to only 29% for total parentral nutrition. Some form of nutrition team or advisory group was available to 39% of respondents, and 7% were in charge of those teams. Six per cent of respondents had access to a team which sole responsibility lay with total parenteral nutrition. Three per cent found that nutrition teams were not involved in the process of being ‘set-up’. If a nutrition support team was not available (61%), over half respondents stated that ‘non specific’ nutritional support was provided for nutritional support or that there was ‘variable’ responsibility. Thirty per cent stated that nutrition support advice was given by the patients’ own clinical team, 6.5% had advice provided by dietary staff, 5% by consultant anaesthetists, and 3% by pharmacists.

In summary, most of the respondents admitted to some involvement with nutrition support predominantly enteral. A minority of BSG members were involved with decision making for total parenteral nutrition, even with their own patients. Less than half of the BSG membership had access to nutrition teams. The poor response rate for the questionnaire of 11.2% can be compared with a response rate of 73–4% for a much more detailed and complex questionnaire sent to district dietitians.

The results of this small survey suggest that members of the BSG play a very minor role in decision making for nutritional support. This is perhaps surprising considering the frequency with which gastroenterological patients (both medical and surgical) require nutritional support. It is hoped that the formation of the Small Bowel/Nutrition Section of the BSG will stimulate greater interest and participation of gastroenterologists in the practice of nutritional support as so many gastrointestinal diseases are associated with nutritional problems.

J J PAYNE-JAMES
D B A SILK
Department of Gastroenterology and Nutrition,
Central Middlesex Hospital,
Acton Lane, London NW10 7NS


Randomised, double blind comparison of omeprazole and cimetidine in the treatment of symptomatic gastric ulcer

Sir,—We have read with interest the recent article by Garcia-Trejo et al (Fig 3; 4, and 5) the per cent of patients is given without the absolute values being stated in either the tables or the text. We feel that by so doing valuable information might be ‘lost’, such as, how many patients on cimetidine took no antacids, etc.

It is also stated that more patients on cimetidine than on omeprazole took antacids and it might be interesting to know in what amount and at what time antacids were taken, as this could interfere with biodispersibility of cimetidine.

JAN PLAS
Stationstraat 6, B-8420, De Haan, Belgium


Reply

Sir,—Dr Plas raises some interesting points relating to our recent paper. In the text, we stated that diary card data were available for 80–83% of randomised patients, and Figures 4 and 5 relate to this subset of the 105 patients randomised to omeprazole and 92 to cimetidine. Over the first 14 days of the trial, significantly fewer patients receiving omeprazole took antacids compared with those receiving ranitidine (p = 0.001). At day 14 seven of 74 patients receiving omeprazole and 27/70 receiving cimetidine also took antacids. From days 2–14, the total antacid consumption in the omeprazole group was 597 tablets and in the cimetidine group 885 tablets (p = 0.011). Patients recorded their daily antacid consumption but not the time at which they took these tablets. A tablet of the antacid used in our study had a neutralizing capacity of 13 mmol HCl, compared with 156 mmol HCl used in the study quoted by Dr Plas; moreover, in our study, the antacid did not contain aluminium. In normal practice, patients take antacids prn and we feel that our study was a fair reflection of this, and therefore of the relative efficacies of omeprazole and cimetidine.

C M E S TE
Royal Albert Edward Infirmary, Wigan

CREST syndrome: nodular regenerative hyperplasia of the liver and primary biliary cirrhosis an overlap syndrome?

Sir,—We have read with interest the paper by Mc Mahon et al about an association between nodular regenerative hyperplasia of the liver, CREST syndrome and primary biliary cirrhosis. We should like to make the following comments. First, we do not agree that their report is the third recorded case of association between CREST syndrome and nodular regenerative hyperplasia of the liver, in our opinion they have failed to quote two other previous reports concerning this association. Moreover, the paper by Haufoua et al was actually the first report of an association between CREST syndrome, nodular regenerative hyperplasia of the liver and primary biliary cirrhosis. Second, we consider that the diagnosis of primary biliary cirrhosis in the report of Mc Mahon et al is based on insufficient data to establish the usual diagnosis criteria of primary biliary cirrhosis. The authors argued that increased serum IgM concentration, cholastasis, and decrease in bromosulphthalein clearance which were observed in their patient, favoured the diagnosis of primary biliary cirrhosis. In our opinion, the presence of increased serum IgM concentration, however, is found in a variety of systemic diseases associated with nodular regenerative hyperplasia of the liver1 and was also observed in our patient (personal communication). Moreover, phosphatase activity is noted in 67% cases of nodular regenerative hyperplasia of the liver.1 A decrease in bromosulphthalein clearance is of no value in the presence of cholestasis and has been reported in patients with nodular regenerative hyperplasia. We believe that their new association is a result of overlap of CREST syndrome and primary biliary cirrhosis.

TABLE Completed questionnaires

<table>
<thead>
<tr>
<th>Respondents (n)</th>
<th>Occupation/status</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>Consultant physicians</td>
</tr>
<tr>
<td>36</td>
<td>Consultant surgeons</td>
</tr>
<tr>
<td>35</td>
<td>Consultant gastroenterologists</td>
</tr>
<tr>
<td>9</td>
<td>Senior registrars (medicine/gastro-enterology)</td>
</tr>
<tr>
<td>7</td>
<td>Consultant paediatric gastro-enterologists</td>
</tr>
<tr>
<td>4</td>
<td>Professors of medicine</td>
</tr>
<tr>
<td>3</td>
<td>Senior lecturers (surgery)</td>
</tr>
<tr>
<td>2</td>
<td>Consultant paediatrician</td>
</tr>
<tr>
<td>1</td>
<td>Senior surgeons (surgery)</td>
</tr>
<tr>
<td>1</td>
<td>Professor of child health</td>
</tr>
<tr>
<td>1</td>
<td>Professor of paediatric gastro-enterology</td>
</tr>
<tr>
<td>1</td>
<td>Junior lecturer (child health)</td>
</tr>
</tbody>
</table>