LETTERS TO THE EDITOR

Postprandial mesenteric blood flow

Sir,-We read with interest the study by Sieber et al(1) in which they used Doppler ultrasound to measure superior mesenteric arterial blood flow in response to liquid test meals given orally and intraduodenally (with and without atropine), and the additional effects of the infusion of combinations of cholecystokinin octapeptide 8, secretin, gastrin 17, and glucagon. We would like to raise several points.

(1) The authors used a 3 MHz Doppler flowmeter. Wavelength considerations with this frequency probe dictate that the best AP spatial resolution of the diameter measuring cursor is ±1 mm (a best 'guess' of 0-5 mm can sometimes be made). The authors, however, have given circumcisions of the mesenteric artery diameter readings to two decimal points and claim to be able to show increases in the diameter of between 5 and 26% after food intake. Furthermore, it is not clear whether an AP and lateral cross sectional diameter reading or only a longitudinal AP diameter reading was taken (in which case the superior mesenteric artery was assumed to be circular). It would have been better if the authors had quoted the mean and standard deviation of the diameter reading.

(2) The quoted increase in superior mesenteric arterial blood flow in response to the oral test meal (180–360% above basal) is far greater than previous reports. It is not clear from the data whether the same subjects were studied on all occasions and compared — a total of nine subjects was enrolled in the study but data are only shown for six. If the same six subjects were not examined on each occasion, direct comparisons cannot be made. Subjects and caloric load are less relevant. This is further compounded by the clear differences in AP basal (SEM) flow rates between the experiments (data not all shown) of 443 (38) ml/minute before the oral test meal and 960 (±330) ml/minute before the intraduodenal test meal. What is the day to day coefficient of variation for the technique in their hands? Were all observations performed by one operator?

(3) The authors state that they infused glucagon, cholecystokinin octapeptide 8, secretin, and gastrin in doses designed to simulate postprandial circulating concentrations. No data, however, are presented to support this, and the authors cannot therefore be sure that physiological concentrations of these hormones were achieved. Furthermore, the dose of glucagon used (500 ng/kg/hour or 8-33 ng/kg/minute) is a supraphysiological dose and would result in plasma concentrations much greater than those normally circulating postprandially. A dose of less than 3 ng/kg/minute would have been more appropriate. We cannot therefore agree with the authors' contention that the hormones 'are unlikely to be involved as blood borne hormones' in mediating splanchnic vasodilation on the data presented but agree with the hypothesis.

We have recently shown (unpublished data) that fasting superior mesenteric arterial blood flow in six subjects measured by Doppler ultrasound decreases during physiological infusions of glucagon. A 1 ng/kg/minute infusion produced no detectable rise in basal glucagon concentrations (mean (SEM) basal glucagon values 144 (15) ng/l after 30 minutes 1 ng/kg/minute glucagon infusion resulted in a value of 129 (80) ng/l and a 3 ng/kg/minute glucagon infusion raised values to 214 (37) ng/l. Mean (SEM) fasting blood flow fell from 678 (97) ml/minute to 549 (88) ml/minute after 30 minutes of a 1 ng/kg/minute glucagon infusion and to 453 (63) ml/minute after 20 minutes of a 3 ng/kg/minute infusion. There were no associ- ated changes in cardiac output, stroke volume, blood pressure, pulse, or peripheral vascular resistance. This suggests that glucagon is a selective splanchnic vasodilator at physiologi- cal concentrations and, indeed, is not involved in mediating the postprandial hyperaemia observed in previous studies. It is noteworthy, however, that Lee et al(2) using indocyanine dye injection methods showed that supraphysiological infusions of 10 and 20 ng/kg/minute glucagon caused no systemic haemodynamic or total hepatic blood flow changes in a group of anesthetic subjects. Arterial blood flow, however (and hence superior mesenteric blood flow), rose signifi- cantly in those with well compensated cirrhosis, suggesting that at supraphysiological doses (similar to those used by Sieber et al) glucagon may be a splanchnic vasodilator.

(4) The authors state that blood pressure and pulse were monitored throughout the experiments but apart from incomplete data for the intraduodenal test meal with and without atropine, they present no information of blood pressure or pulse rate changes in response to any of their meals or infusion experiments. The pulse and blood pressure response to meals varies with both the age of the subject and meal composition. Therefore these data should have been included or discussed in the current study.

(5) Atropine was shown to attenuate the postprandial hyperaemic response to the meal, suggesting that the cholinergic nervous system has a role in this change. The mechanism for the postprandial response is, however, likely to be multifactorial and may also involve β-adrenergic and peptide mechanisms. Neurotensin, an intestinal polypep- tide, and calcitonin gene related peptide are known to be powerful splanchnic vasodilators and may also be involved in postprandial splanchnic vasodilation.

G D BRAINTVEDT, A E READ, R J M CORRALL, Department of Medicine M HALLIWELL, P T WELLS Department of Medical Physics, Royal Belfast Hospital, Belfast BS3 8BW


Reply

Sir,—Dr Wells raises important points about our recent publication,1 especially about the methodology used to assay superior mesenteric artery blood flow (SMABF). Several comments need clarification, however, so we would like to reply in the same order as given in the letter.

(1) We used a 3·5 MHz sector scanner for diameter measurements (and not a 3 MHz Doppler diameter scanner as stated in the letter). This sector probe was combined with a pulsed Doppler flow meter (3·0 MHz). Diameters were presented as mean (SEM) cm units. The statement that we were reporting two decimal points is therefore rather misleading.

In our experience, the superior mesenteric artery has a circular anatomy which is an advantage compared with the portal vein where the determination of the cross sectional area of the vessel is complicated by an ellipsoidal vessel shape.

(2) We are puzzled by the statement that the increases in postprandial SMABF reported in our paper were far higher than in the published reports: similar measurements have been reported by others2 with comparable meals and caloric loads. On the other hand, the reports cited by Dr Wells are hardly comparable.

In one study,3 a single technique was employed to quantify SMABF (dye dilution). In a second, a lower caloric load was tested4 and in the study of Qamar5 only fasting SMABF was measured.

Nine subjects participated in this study. For all oral food experiments as well as the hormone experiments, the same six volunteers were studied. For the experiments involving intraduodenal food application, three additional subjects were

Helicobacter pylori infection in healthy people

Str.—We have recently published the results of an epidemiological study in Gut reporting discrepancies between active Helicobacter pylori (Hp) infection determined by means of the "C-urea breath test and the prevalence of anti-Hp antibodies in healthy volunteers. Further developments in serological tests make it necessary to report additional information and to reconsider our conclusions based on the serological data presented in the paper. A systemic humoral immune response to Hp pylori has been searched for in many studies (including our own) by means of serological tests, some of which have become commercially available. They have all in common that whole bacterial cells were primarily used as antigen (acid glycine extracts or sonicated bacterial cells) and this is the case underlined in SMABF observed in our study with this dose of glucagon.

We cannot comment on the unpublished data discussed in the letter, as they are not available yet.

In summary, we have presented data on specific mechanisms regulating postprandial mesenteric artery flow by using the echo-Doppler technique. Quantitative studies on postprandial hyperaemia are important for the understanding of normal physiological processes. We therefore hope that future research by various groups (as the group of Dr Wells) will be able to shed more light on the physiological and pathophysiology of intestinal blood flow regulation.

CORNEL SIEBER
Hepatic Hemodynamic Laboratory IH111 VAMC and Yale Medical School, West Haven, CT 06516, USA
CHRISTOPH BEGLINGER
Division of Gastroenterology
KURTJAEGER
Division of Angiology, University Hospital, CH-4031 Basel, Switzerland

Correspondence to: Dr Beglinger.


Medical treatment of bleeding peptic ulcer: old drugs, new regimens

Str.—Haemorrhage from peptic ulcer is due to the erosion of artery at the ulcer base by the continued digestive action of hydrochloric acid and pepsin. Platelet plug and clot formation (both factors being pH sensitive) seal the bleeding artery. Dissolution of the clot is the most important factor for peptic ulcer bleeding.* Intragastric acidity prolongs the duration of bleeding as the gastric juice contains fibrinolytic substances and a pH <7 results in inhibition of platelet aggregation and dissolution of the clot. Under- standing of all these mechanisms may lead to the development of new agents that can be used to inhibit fibrinolysis. The efficacy of none of the above mentioned drugs without active infection. The cumulative per- centage of patients reacting with either one of the three first generation tests amounted to 29%, resulting in a specificity of only 71%. These findings support the hypothesis that in general, such serological tests are of only limited value in the diagnosis of Hp pylori infection in the past. While it is still possible that healthy people eventually eliminate H pylori spontaneously, this conclusion may not be drawn from our results based on the first generation serological tests that was used. Similar caution, however, should be used in the interpretation of virtually all studies that reported H pylori prevalence data based on the first generation serological tests. Further epidemiological studies designed to gather information on the prevalence of Hp pylori should preferentially use direct proof of infection rather than serology.

B MEYER-WYSS
C BEGLINGER
A BASELIAH
Division of Gastroenterology, University Hospital, CH-4031 Basel, Switzerland
H MERKI
E RENNER
Division of Gastroenterology, Inselspital, CH-3010 Bern, Switzerland
