Simplified single sample 13Carbon urea breath test for *Helicobacter pylori*: comparison with histology, culture, and ELISA serology

R P H Logan, R J Polson, J J Misiewicz, G Rao, N Q Karim, D Newell, P Johnson, J Wadsworth, M M Walker, J H Baron

Abstract

There is no ideal method for detecting *Helicobacter pylori*. The 'standard' 13Carbon urea breath test (13C-UBT), which involves collecting eight to 15 breath samples and subsequent costly analysis, was modified by pooling 21 samples of expired breath taken at five minute intervals for 40 minutes into a collecting bag, from which a single 20 ml aliquot was taken and analysed by mass spectrometry. This test was evaluated on 50 patients after routine upper gastrointestinal endoscopy, and results were compared with those from the standard 13C-UBT, bacteriology, ELISA serology, and histology — the latter being taken as the gold standard. *H pylori* were seen in 34 of 50 (68%) patients (in three it was detected in biopsy specimens from the corpus alone). The modified 13C-UBT was positive (pooled excretion δ^{13}CO$_{2}$>>5 per ml) in 31 patients and negative in 19 (three false negative results), specificity was 100% (standard 13C-UBT 94%) and sensitivity 92% (standard 13C-UBT 93%). The modified 13C-UBT had a coefficient of variation within subjects of 3.7%.

For the ELISA serology and culture the specificities were both 100%, but the sensitivities were 82% and 68% respectively. The 13C-UBT results correlated with the grade of histological gastritis. The modified 13C-UBT is simpler, cheaper, more reproducible, and provides an easy non-invasive method for the detection of *H pylori*.

Endoscopy

Endoscopy (Olympus GIFIT20) was performed under intravenous sedation (diazepam or midazolam), and endoscopic findings were recorded. Four biopsy specimens were taken from the antrum and two from the body of the stomach. Biopsy forceps (Olympus FB13K) were sterilised by autoclaving and endoscopes were disinfected between patients, as recommended, using an automatic washing machine (KeyMed EW20). At endoscopy, 10 ml of blood were taken, and the serum was separated and stored at -70°C.

Histology

Two biopsy specimens from the antrum and two from the gastric body were processed routinely, embedded in paraffin wax, and stained with haematoxylin and eosin and by the Gimenez technique. Every specimen was examined by the same experienced histopathologist (MW) without knowledge of the results of the other
tests. Gastritis was classified according to Whiteheada as chronic, chronic atrophic, active atrophic, or acute, and severity was graded 1 (mild), 2 (moderate), or 3 (severe). The number of \(H. pylori \) was assessed and scored as 0 (none), 1+ (few), 2+ (moderate), 3+ (many), or 4+ (seething). The histological results were taken as the reference gold standard.

MICROBIOLOGY
Two antral biopsy specimens were placed in brain heart infusion (BHI) broth and promptly cultured. Mucus was scraped from the specimens and plated onto selective media and non-selective blood agar for routine culture. Plates were incubated at 37°C microaerobically (CampyPak, BBL, Cockeysville, USA) for up to six days. \(H. pylori \) was identified by typical colony appearance and positive oxidase and urease tests. The growth of colonies was graded as 0 (none), 1+ (few), 2+ (moderate), or 3+ (many).

SEROLOGY
SeroLOGY was performed by ELISA using the acid glycine extract (flagellated) antigen as described previously,4 but using sera at a 1:200 dilution. The threshold for seropositivity was taken as 10 μg specific IgG/ml.

\(^{13}\text{C}-\text{UBT} \)
The \(^{13}\text{C}-\text{UBT} \) was performed three hours after the endoscopy in all patients recruited to the study, and was repeated either 24 hours, one week, or more than one week later in the 21 patients able to attend for a repeat test. In six patients, the \(^{13}\text{C}-\text{UBT} \) was done on three consecutive days.

METHODS
Patients exhaled into a 2 l collecting bag. Using a needle and syringe, a 20 ml baseline sample was aspirated from the bag and stored in a 20 ml vacutainer (Beckton-Dickinson). A fatty test meal (one sachet of Complan, 50 ml of semi-skimmed milk, and Calogen 100 ml) to delay gastric emptying of the isotope, was taken 12 minutes before \(^{13}\text{C}-\text{urea} \) (125 mg dissolved in 30 ml of sterile water), which was drunk at time zero. Distribution within the stomach was aided by turning the patient onto each side and head down, each for two minutes.

STANDARD COLLECTION OF SAMPLES FOR THE \(^{13}\text{C}-\text{UBT} \)
At 10, 20, 30, 40, and 60 minutes, patients filled a 2 l collecting bag with expired breath from which duplicate 20 ml aliquots were taken into 20 ml vacutainers.

SIMPLIFIED COLLECTION OF SAMPLES FOR THE \(^{13}\text{C}-\text{UBT} \)
Concurrently, and at five minute intervals from 10 to 40 minutes, patients filled a second 2 l collecting bag, the entire contents of which were then expelled into a large reservoir bag. At the end of the test two 20 ml duplicate aliquots were aspirated from the reservoir bag and stored in two 20 ml vacutainers.

The ratio of \(^{13}\text{CO}_2 \) to \(^{12}\text{CO}_2 \) in the expired air samples was measured by mass spectrometry, with cryogenic extraction of the \(\text{CO}_2 \), using a dual inlet ratio mass spectrometer (VG SIRA II, BSIA, Brentford, Middlesex, UK). Results were expressed as parts per thousand (per mil) excess \(\delta^{13}\text{CO}_2 \) (by subtraction of the baseline \(^{13}\text{C}-\text{urea} \) breath sample), and were compared with the reference gold standard. For both the modified and standard \(^{13}\text{C}-\text{UBT} \), a positive test was defined as any breath sample with a value more than 3 SD above the mean value of the \(^{13}\text{C}-\text{UBT} \) for those patients without \(H. pylori \) as determined by the gold standard.

ANALYSIS OF RESULTS
All procedures were done by the same operators, without knowledge of the patients' \(H. pylori \) status by other methods. The results of histology were taken as the gold standard and compared with the results of culture, serology, modified, and standard \(^{13}\text{C}-\text{UBT} \). The variables recorded were subjected to statistical correlation and multivariate analysis. Reproducibility was determined by calculating the coefficient of variation within subjects using an analysis of variance.

Results

ENDOSCOPY
Fifty patients (26 men), median age 50-5 years (range 20-85) were recruited into the study. Indications for endoscopy were most commonly abdominal pain (34%), peptic ulcer follow up (23%), and dyspepsia (16%). The most frequent findings were macroscopic gastritis (33%), normal appearances (18%), or duodenal ulcer (12%).

\(^{13}\text{C}-\text{UBT} \)
Thirty one patients with \(H. pylori \) present on antral or gastric body histology had positive standard and modified \(^{13}\text{C}-\text{UBTs} \) (pooled excretion excess \(\delta^{13}\text{CO}_2>4.5 \) per mil). Fourteen patients with no \(H. pylori \) seen on histology had negative standard and pooled breath tests (mean (SD) pooled excretion excess \(\delta^{13}\text{CO}_2=1.35 \) per mil (1-01), Fig 1). Three patients with positive histology had negative modified and standard \(^{13}\text{C}-\text{UBT} \). However, in two of these three, a positive breath test was recorded on repeat testing within 24 hours and also in the third a week later. There were two false positive results with the standard \(^{13}\text{C}-\text{UBT} \), each with the 10 minute breath sample, but none with the modified \(^{13}\text{C}-\text{UBT} \).

Twenty one patients underwent serial \(^{13}\text{C}-\text{UBTs} \), 12 within 24 hours of the first, and 11 more than six days after the first test. Six other patients had three breath tests on three consecutive days. The reproducibility of the standard \(^{13}\text{C}-\text{UBT} \) at 24 hours and at six days or longer (Table) was not as good as that of the modified
Reproducibility of the 13C carbon breath test

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Excess 13CO$_2$ per mil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 and 24 Hours</td>
</tr>
<tr>
<td>10: mean (SD)</td>
<td>12.9 (2.9)</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td>20: mean (SD)</td>
<td>14.5 (4.7)</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td>30: mean (SD)</td>
<td>14.5 (3.3)</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td>40: mean (SD)</td>
<td>15.0 (3.3)</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td>60: mean (SD)</td>
<td>13.6 (2.0)</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Pooled sample: mean (SD)*</td>
<td>14.1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>c of v (%)</td>
</tr>
</tbody>
</table>

*For all pooled samples.

13C-UBT, which had an overall excellent reproducibility (coefficient of variation = 3.7%, Fig 2).

Discussion

A major advantage of 13C-UBT over the other methods of detection of H pylori is the potential for frequent, multiple, non-invasive repeat assessments of H pylori status. It is therefore important to develop, modify, and standardise this test into a cheap, easy, reproducible, non-invasive method for the detection of H pylori. Since the first description of the 13C-UBT, there have been only brief descriptions of alternative methods, mainly using different test meals or doses of isotope. This is the first study to standardise the methodological, serological, and biochemical methods available for the detection of H pylori with the standard 13C-UBT (Graham), and with the modified 13C-UBT.

The standard 13C-UBT used in this study has been shown to have a sensitivity and specificity similar to previous data. The new modified 13C-UBT was as good as the standard method, but is much easier and cheaper to perform. In addition, the reproducibility of the new modified 13C-UBT was greater than the standard method.

HISTOLOGY

H pylori was present in antral (n=31) or corpus (n=24) biopsy specimens in 34 of 50 patients (68%). In three patients, H pylori was found in the corpus biopsy specimens alone. None of these three patients had histological appearances suggesting antral bile reflux gastritis or intestinal metaplasia.

Antral and body gastritis was recorded in all the patients with H pylori. In the 16 patients with no H pylori, four had normal histology and 12 had grade 1 or 2 chronic atrophic antral gastritis. None of these patients had histological evidence of intestinal metaplasia or bile reflux gastritis on antral biopsy specimen.

MUTTER

Culture of antral biopsy specimens was positive in 23 of the 34 patients with H pylori seen on histology (specificity 100%), but failed to identify 11 patients with H pylori (sensitivity 68%). Two of the patients with false negative culture also had negative antral histology (but positive body biopsy specimens), while a further three patients had only scanty numbers of antral H pylori seen on histology. There was no correlation between the extent of growth seen on culture with the reported sensitivity of H pylori detection of 13C-UBT or with the number of organisms seen by light microscopy.

SEROLOGY

SeroLOGY correctly identified 28 patients with histological evidence of H pylori (specificity 100%), but failed to identify six patients with positive antral histology (sensitivity 82%). Two of the six false negative serology results were also negative on culture.
there would have been three apparently false positive breath tests. However, an accurate assessment of the patients' *H pylori* status was made by additional histological examination of biopsy specimens taken from the body (two of these patients were also negative on culture). *H pylori* is most often found in the gastric antrum. However, any method of detection confined to antral biopsy specimen alone (especially in the presence of duodenogastric bile reflux, intestinal metaplasia, or low levels of colonisation by *H pylori*) is liable to sampling error, which may be decreased by taking multiple biopsy specimens from the antrum and elsewhere in the stomach. The modified 13C-UBT, however, provides an easier and alternative method for the detection of *H pylori* without the risk of sampling error.

Bacterial culture gave the lowest sensitivity of all the methods used, and while this also may be partly due to sampling error, it may also reflect the inherent technical difficulties associated with culture. Unlike Rauws's experience with the 13C-UBT we were unable to correlate the extent of *H pylori* growth in culture with the result of the breath test. This, as with Graham's report, may have been because of the size of our study. The modified 13C-UBT result, however, did correlate with the grade and type of gastritis. This may be a result of the residual histological response resolving more slowly after *H pylori* has migrated to colonise other areas of the stomach.

For any longitudinal study involving serial assessments it is important to know the extent to which results from the 13C-UBT may vary spontaneously with time. Results in the 21 patients with serial 13C-UBTs show that there is very little day to day variation, but over longer periods the variability increases. It is not yet known if these minor differences are a result of fluctuations in the bacterial load of *H pylori* or changes in urease activity.

The results of this study show that a simple modification of the 13C-UBT provides an accurate, non-invasive, sensitive means for the detection of *H pylori*, with results which are more easily interpretable and cheaper than the original method.

The authors would like to thank the staff of the GI units at the Central Middlesex and St Mary's Hospitals for their help with this study.

A brief abstract of this work was presented at the European Association of Gastroenterology and Endoscopy, June 1990.