Recovery from sedation in day units

Sir,—There can be little doubt that day units offer advantages to both hospitals and patients for minor surgical and investigational procedures. But there is a danger that pursuit of these advantages could erode standards to dangerous levels. The safety and ease of the progress of the patient through day units depends on the medical and administrative practices implemented in such units.

In the case of patients who attend the day unit of this hospital for gastroscopy, the endoscopist administers an intravenous benzodiazepine as sedation. After the procedure, patients rest in a quiet room and are allowed to leave when they feel adequately recovered. All patients are advised that they will not be fit to drive and should arrange to be accompanied home by a responsible adult.

Recently we monitored a group of consecutive patients attending our day unit. Over five weeks 85 patients attended for upper gastrointestinal endoscopy, 40 women and 45 men, aged 17 to 84 years. We noted the times of their arrival, the duration of the procedure, and of their discharge, and the dose of the benzodiazepine they had received. We found that the time from the administration of the intravenous sedative to the time the patient left the unit was unexpectedly short (mean 1 hour 23 minutes ± 30 minutes). For the patients given diazepam there was no correlation between dose and time to discharge (r=0.009, p>0.05), but there was a significant correlation for those given midazolam (r=0.41, p<0.02). For the whole sample (n=85), however, there was a stronger negative correlation between time to discharge and the time spent in the unit before the procedure (mean 2 hours, range 45 minutes–3 hours 45 minutes (r=-0.3, p<0.02). It seems overall that the time spent in the unit before the procedure is the best predictor of recovery time.

As psychologists concerned in the assessment of impairment after centrally acting drugs we find these rapid departures startling. We would be most interested in comments from your readers.

CAROLINE WHITEHEAD
LAGALE D SANDERS
Department of Anaesthetics,
University Hospital of Wales,
Heath Park,
Cardiff CF4 4XW

'14C-urea breath test for Helicobacter pylori infection

Sir,—We read with interest the recent paper by Dill et al on the 'Evaluation of '14C-urea breath test in the detection of Helicobacter pylori and in monitoring the effect of tri-potassium dicitrato bismuthate in non-ulcer dyspepsia' (Gut 1990; 31: 1237–41). In this study the authors used 250 mg of '14C-urea per patient.

We have recently conducted a study comparing the '14C-urea breath tests in Helicobacter pylori positive patients both before and after at least one month after treatment. We found 100% agreement between the two tests and obtained just as good discrimination between positive and negative patients with 125 mg (n=10) and 75 mg (n=13) of '14C-urea as with 250 mg (n=9). We agree with Logan et al. that excellent results can be obtained with 100 mg of '14C-urea per test but think that a further saving without jeopardising accuracy can be achieved by administering only 75 mg of the stable isotope per patient. Others have had similar experience.

Since the '14C-urea test was first described by Graham et al in 1987 the analysis of '14CO2 in breath samples collected during the test has proved to be a major drawback to using the test in routine clinical practice. It is necessary to use isotope ratio mass spectrometry (IRMS) to measure '14C enrichment in CO2 because '14C changes of less than 1 part per 1000 need to be determined. Before the actual '14C measurements take place, '14CO2 must be purified from other breath gases. This has been achieved by a cryogenic purification unit linked to the IRMS. Breath analysis on such systems is slow (about 20 minutes per sample) and costly (0.5-1 l of liquid nitrogen per sample) and requires a complex dual inlet IRMS for the final '14C measurement.

In our own study we have used an automated breath '14C analyser (ABCA) utilising fast and simple chromatographic purification and a single inlet mass spectrometer. The system consists of a Roboprep-G purification system linked to a Tracemass stable isotope analyser (European Scientific, Crewe, UK). Briefly, each breath sample is automatically injected into the purification unit by a continuous flow of helium. Water vapour is removed by a magnesium perchlorate trap. A gas chromatograph (75°C) then separates CO2 from N2 and O2. The CO2, swept by the helium gas into the stable isotope analyser, is then purified. Breath samples were measured against a reference gas (5% CO2, balance N2), which had a delta '14C value of ~41-60 per 1000 (e PDB). The '14C enrichments of breath samples were expressed as a percentage of the patient's own baseline (0 min) delta '14C value. This technique for analysing '14C breath samples proved to be easy, fast (5 minutes analytical cycle time), and low consumable cost (GC grade helium).

Patients fasted overnight before the test. A nutrient dense drink (20 g Calogen LCT emulsion, 15 g Maxipro HPB powder, 40 g Calorene glucose polymer, 15 g Crusha syrup, and 300 ml water) was taken followed by the '14C-urea in 50 ml water. Breath samples were collected at 0, 20, 40, and 60 minutes after drinking the '14C-urea solution by using an alveolar breath collection bag. At each breath collection 2 x 20 ml aliquots of breath were drawn from the bag to fill two septum capped evacuated tubes. These samples were then sent to Europea Scientific for analysis of '14C enrichment. The '14C enrichments were performed within 48 hours of the '14C-urea breath test* and the personnel at Europea Scientific had no knowledge of the result of the former when making their own analysis.

* All pretreatment '14C-urea positive patients (positive by the '14C-urea breath test) showed a '14C change of >5/1000 in the mean of the 40 and 60 minute breath samples (n=16) regardless of whether the patient had initially received 250, 125, or 75 mg of '14C-urea. In contrast, the one month (or greater) post-successful eradication breath tests of previously H pylori patients (n=16) showed a '14C change of <5/1000, regardless of the dose of '14C-urea given.

It has been our previous experience with the '14C-urea breath test that within as little as 24–48 hours of completing a course of a colloidal bismuth capsule the breath test has been temporarily suppressed to undetectable levels rapidly multiplies to levels that again permit its detection using a urea breath test. These rapid returns to positivity have been shown by restricting the breath test analysis to be due to recrudescence and not reinfection. Logan et al repeated the endoscopy, biopsy, and '14C-urea breath test 48–72 hours after completing the course of 28 days of colloidal bismuth and found a 'clearance' rate of only 5/28 (18%). When the same group more recently reported their results for 'clearance' of H pylori after one, two, or four weeks of colloidal bismuth, figures of 10/15 (66%), 8/12 (75%), and 17/20 (85%) were obtained when the breath tests were performed within 24 hours of stopping treatment. H pylori, however, recurred in all but one patient within one week of stopping treatment. Had 'clearance' been defined as a figure of 1/47 (2-1%) would have been recorded.

In our view the word 'clearance' should be avoided in the context of anti-H pylori treatment. We suggest that instead if research workers wish to study the organism which has been treated within a particular treatment or within 24 hours of discontinuing it they talk about 'suppression' and not 'clearance.' We entirely agree with Dill et al and Logan et al that if one wishes to study H pylori 'eradication' then it is necessary to wait at least one month after completing any given course of treatment before repeating tests. We suggest that assessing the H pylori state more than 24 hours and less than 28 days after treatment has little or no clinical relevance.

G D BELL
K.Powell
J. WEIL
G Harrison
Department of Medical Physics,
University of Liverpool, Hope Hospice.
Liverpool L1 7LJ

S Brookes
SPROOK,
European Scientific,
Europe House,
Ellesmere Road,
Chester

Correspondence to: Dr G D Bell.

7 Bell GD, Weil J, Harrison G, et al. '14C-urea breath test

Gut: first published as 10.1136/gut.32.5.551 on 1 May, 1991. Downloaded from http://gut.bmj.com/ on May 30, 2022 by guest. Protected by copyright.