Conjugation of phenols in human colonicocytes

SIR,-The role of altered colonic detoxification mechanisms in various pathophysiological conditions including ulcerative colitis and carcinoma-genesis cannot be overemphasised.1 We have thus read with great interest the recent report of Ramakrishna et al about sulphation as a mechanism of phenolic compound inactivation in human colonicocytes (Gut 1991; 32: 46-9). Though the work provides valuable new information, we feel obliged to make a few critical comments. Firstly, the title and parts of the text may be misunderstood: in fact, paracetamol (acetaminophen) and not phenol sulphation has been investigated. Secondly, the mention that 'studies, on phenolic compound inactivation, using colonicocytes from resected colon specimens have not been undertaken' is not entirely correct. Indeed, we have reported preliminary results about the conjugation of 1-naphthol, another phenolic compound, in human isolated colonic cell preparations. 1

1-Naphthol was extensively conjugated in human colonic crypts, mainly by sulphation (75%), but also by glucuronidation (24%). These results were in agreement with those of Cohen et al in cultured human colonic mucosa,2 where normal colon predominantly sulphated 1-naphthol; in contrast, cancer tissue showed a glucuronidation predominant pattern. In the study of Ramakrishna et al paraacetamol was poorly glucuronidated in normal colonicocytes. This finding is not representative of the metabolic activity of human colonicocytes for all phenolic compounds, since 1-naphthol was efficiently glucuronidated. Moreover, this discrepancy may also come from the higher substrate concentration used by Ramakrishna et al, as it has been observed in animal species that glucuronidation is more readily saturable than sulphation.3

In dialysates of patients with ulcerative colitis, known to have a neoplastic condition, Ramakrishna et al found no increase of paraacetamol glucuronide concentrations and a reduction of sulphated conjugates, which they interpret as an impairment of the capacity of the mucosa to sulphate phenols. However, the reduced recovery of sulphate in dialysate may alternatively be interpreted as increased paraacetamol sulphate absorption.4 Moreover, reduced sulphation activity in colonicocytes from ulcerative colitis patients would be at variance with other reports of enhanced biotransformation reactions.5 These discrepancies between different compounds and experimental models, and the strong pathophysiological relevance of colonic biotransformation activities, emphasise the need for further studies in this field.

PIERRE DECHELOTTE
Policlinique Hospital Charles Nicolle, F 76031 Rouen, France
MICHAEL SCHWENK
Abteilung Allgemeine Pathologie, Medizinische Hochschule Hannover, D 3000 Hannover 61, Germany

Reply

SIR,-We are pleased to respond to the comments by Dr Dechelotte and Professor Schwenk. Phenol in a known form of p-acetaminophenol, was used as an example of a phenol because much is known about the metabolism of paracetamol and because it is implicated in causing exacerbations of ulcerative colitis.1

The evaluation of colonicocyte metabolism by rectal dialysis does have limitations, in particular, underestimation of metabolite formation due to rectal absorption. This point was discussed in detail in a previous paper6 and has also been addressed by Sund and Lauterbach.7 The latter study indicated that the dialysis technique may underestimate detoxification mechanisms by at least 50%. Given these limitations, we found that glucuronidation was absent in a large number of healthy control subjects. We accept that colonicocytes can detoxify phenols by glucuronidation. However, using rectal dialysis in subjects with ulcerative colitis paracetamol glucuronide was undetectable in most cases and consequently we did not discuss this finding in detail.

The reduced activity of sulphated paraacetamol in ulcerative colitis is in part a phenomenon of reduced sulphation by colonic epithelial cells, an observation to be published shortly.6 In acute and chronic ulcerative colitis absorption of sulphated compounds is decreased and, therefore, a low recovery rate of sulphated phenol in dialysate may not necessarily be due to an accelerated absorption process. To prove or disprove either point of view further experimentation would be needed.

We thank Dr Dechelotte and Professor Schwenk for drawing our attention to glucuronosylation processes in colonic epithelial cells.

W. E. ROEDIGER
I. ROBERTS-THOMSON
Departments of Surgery and Gastroenterology, Queen Elizabeth Hospital, Woodville, South Australia 5011

Ranitidine and non-steroidal anti-inflammatory drugs (NSAIDs) associated gastric and duodenal ulcers

SIR,-We read with interest the recent article by Lancaster-Smith et al (Gut 1991; 32: 252-5). They have reported improved prophylactic effect of ranitidine was effective in treating gastric and duodenal ulcers related to NSAID use whether or not the NSAIDs were continued and even more effective in patients in whom the NSAIDs were discontinued. Thus gastric ulcers had healed at eight weeks in 63% of those still taking NSAIDs compared with 95% of those who had stopped NSAID treatment. Duodenal ulcers healed in 100% in those who stopped NSAIDs at eight weeks compared with 84% of the group who continued NSAIDs, but the healing rates were slower.

The question remains of whether NSAID induced gastric ulcers behave differently from ulcers that seem to have been induced by taking NSAIDs have different rates of healing or recurrence with or without H2 antagonists or H2 blocker treatment. Are there studies evaluating the efficacy of famotidine in NSAID induced duodenal and gastric ulcers as well as ulcers unrelated to the use of NSAIDs? Did show differences in healing rates at eight weeks in patients in whom the ulcers were temporarily related to NSAID use and those in whom there was no relation to the use of NSAIDs. Thus of 160 patients with duodenal ulcers, 40 (25%) were entered into the trial with a history of recent or prolonged NSAID use who had NSAID/aspirin just before presenting with their ulcer. All (100%) healed in eight weeks with famotidine when the NSAIDs were stopped at the beginning of the trial. This contrasts with the group of patients who were non-NSAID users where only 88% were endoscopically healed at the end of eight weeks. Furthermore, the 510 who went onto six weeks' maintenance famotidine had 74% of these who had NSAIDs, all those previously related to NSAID use remained healed at six months (100%) against 74% of patients with ulcers not related to NSAID use. Among the 66 patients with gastric ulcers, 50% had taken NSAIDs just before presenting with gastric ulcer; 88% had complete healing with famotidine when NSAIDs were discontinued within eight weeks compared with the non-NSAID users who had a healing rate of 75% (unpublished data). These studies suggest that NSAID/ aspirin induced duodenal and gastric ulcers not only have a different pathogenesis to de novo ulcers but may have a different effect with or without NSAID/ NSAID ulcer. The questions from these studies are: Do ulcers that are induced by NSAIDs really need the intensive treatment once the inducing agents (NSAIDs) have been stopped? In fact, what would the healing rate be just by stopping the NSAIDs without any treatment? Once healed, do these ulcers have the same tendency to recur as de novo ulcers and, thus, who patients who are able to stop NSAIDs be required to take maintenance treatment or will the recurrence rate be low even after discontinuing treatment? It seems that maintenance treatment will be extremely beneficial in this group of patients. All past and future studies on peptic ulcer disease need to be stratified to examine the difference in the healing rates of NSAID induced ulcers com-

pared with non-NSAID ulcers? The results of our study seem to indicate that this aspect of clinical trials would have to be addressed in future publications on ulcer treatment.

SIMMY BANK
RONALD E GREENBERG
STEVEN ZUCKER
Long Island Jewish Medical Center,
Division of Gastroenterology,
270-05 76th Avenue,
New Hyde Park,
New York 11042

Case of watermelon stomach successfully treated by heat probe electrocoagulation

Sir,—We read with interest the report by Tsi et al (Gut 1991; 32: 93–4) of a patient whose gastric antral vascular ectasia was treated by laser photocoagulation. We have a similar case of a 77 year old woman to whom we applied heat probe electrocoagulation (Olympus Heat Probe Unit) with an equally satisfactory result.

The patient had a long history of iron deficiency anaemia, thought to be due to severe antral gastritis, which despite continuous oral and intravenous administration of iron was not under control. Several transfusions (at a rate of 1–4 units of blood per month) had been required since the beginning of 1990. In July when she collapsed with a haemoglobin concentration of 4 g/l, a diagnosis of ‘watermelon stomach’ was made endoscopically and confirmed histologically. There was no evidence of liver disease or portal hypertension. Two sessions of heat probe treatment were carried out applying 100 deliveries of 10 joules each. Subsequently there has been no need for further transfusion and the patient’s haemoglobin remains above 10 g/l. However, there has been no change in the endoscopic picture.

Our patient had a history of coronary heart disease which is suggested as a predisposing factor (as are liver cirrhosis and portal hypertension) to the formation of mucosal vascular malformations. Bipolar and heat probe electrocoagulation have been reported to be as effective as that of the Nd:YAG laser photocoagulation for treatment of gastric antral vascular ectasia, and our experience confirms this.

DIMITRIS KAMEROGLOU
MOUNES DAKAK
JOHN BENNETT
Gastrointestinal Unit,
Hull Royal Infirmary,
Aensby Road,
Kingston upon Hull HU3 2EZ

Correspondence to: Dr Kamberoglou.

Sir,—I read the letter of Kamberoglou et al with interest. Their patient had many features similar to the case we reported, with similar pretreatment transfusion requirements and earlier misdiagnosis. Heat probe thermo-coagulation has been used successfully in treatment of bleeding duodenal ulcers and also has the advantage of being cost effective compared by the Nd:YAG laser photocoagulation. I am, however, a little concerned over its use in the control of bleeding in the watermelon stomach. Collateral thermal damage to gastric mucosa is likely to be greater. It would be of little consequence if the vascular ectasia occupied only a small area of the antrum. However, the vascular lesions may be extensive. The safety aspect of thermo-coagulation of large areas of the stomach with a heat probe has not been addressed. The authors also admit that there was no visible resolution of the lesions endoscopically. In the laser treated patient, however, the endoscopic appearances improved, suggesting regression of the vascular abnormality which may have some bearing on rates of recurrence of bleeding in treated patients.

While heat probe thermo-coagulation represents a cheap and attractive treatment for the smaller lesions of watermelon stomach, I think that treatment of the more extensive lesions is likely to be better with laser photocoagulation.

HHTSAI
Department of Medicine,
University of Liverpool

Sir Francis Avery Jones BSG Research Award 1991

Applications are invited by the Education Committee of the British Society of Gastroenterology, who will recommend to Council the recipient of the 1992 award. Applications should include:

(1) A manuscript (2 A4 pages only) describing the work conducted.

(2) A bibliography of relevant personal publications.

(3) An outline of the proposed content of the lecture, including title.

(4) A written statement confirming that all or a substantial part of the work has been personally conducted in the United Kingdom or Eire.

Applicants must be 40 years of age or less on 31 December 1992 but need not be a member of the BSG. The recipient will be required to deliver a 40 minute lecture at the Spring Meeting of the Society in 1992. Applications (15 copies) should be made to: The Honorary Secretary, BSG, 3 St Andrew's Place, Regent's Park, London NW1 4LB by 1 December 1991.

Postgraduate Gastroenterology Course

A Postgraduate Gastroenterology Course will take place on 5–8 January 1992 in Oxford. Further information is available from Dr D P Jewell, Radcliffe Infirmary, Oxford OX2 6HE. Tel: 0865 224829.