Gastric emptying of liquid in children suffering from acute rotaviral gastroenteritis

P K Bardhan, M A Salam, A M Molla

Abstract

Nausea and vomiting commonly occur in children suffering from rotaviral diarrhoea. Gastric emptying was studied in 10 children (age six to 12 months) suffering from acute diarrhoea caused by rotavirus using a dye dilution double sampling technique. The test meal was 5% dextrose in water and this test was repeated 12 weeks after recovery. The median (range) of the percentages of the liquid meal remaining in the stomach at 5, 10, 20, 40, and 60 minutes after instillation of the meal were 82 (79-90), 70 (61-86), 51 (38-76), 26 (14-53), and 13 (2-35) respectively in the acute stage, whereas after the recovery period the values were 76 (70-79), 58 (49-63), 33 (24-40), 11 (2-26), and 3 (0-7). The differences were statistically significant. The half time of gastric emptying (T1/2) was 19-5 (14-30) minutes in acute stage, and 13-1 (10-15) minutes during follow up (p<0.01). Rotaviral gastroenteritis is accompanied by abnormal gastric motor function, as manifested by delayed emptying of a liquid meal.

Among the different microbial pathogens causing acute diarrhoea in children below the age of two years, rotavirus is the most common pathogen.1 Rotaviral gastroenteritis is characterised by nausea, vomiting, dehydrating diarrhoea, and associated constitutional symptoms of varying degrees, generally followed by complete recovery without sequelae.2 Characteristic histological lesions have been noted in the proximal small intestinal mucosa after infection with rotavirus,3 although no consistent morphological change in the gastric mucosa can be identified.4

Abnormal gastric emptying has been described in several medical conditions associated with anorexia, nausea and vomiting, including gastrooesophageal reflux, gastric ulcer, anorexia nervosa and in diabetic enteropathy.5 In patients suffering from rotaviral gastroenteritis, the prominence of nausea and vomiting as presenting symptoms suggests abnormal gastric function during the actual illness, despite the absence of apparent infection of the gastric mucosa. A marked delay of gastric emptying has been observed in healthy adult volunteers developing diarrhoea after ingestion of Norwalk and Hawaii agents.6 No reports about gastric emptying in children suffering from acute rotaviral enteritis are available. The frequent occurrence of anorexia, nausea, and vomiting early in the course of rotaviral infections often causes concerns about the tolerance of oral rehydration solutions in these patients. The present study was designed to ascertain whether there is any impairment in gastric emptying of liquids in children below two years of age suffering from acute rotaviral gastroenteritis.

Methods

Ten children below two years of age suffering from acute watery diarrhoea of less than 48 hours duration were included in the study. All experienced nausea and vomiting from the onset of the illness, none had clinical evidence of a systemic illness, and none had received any antidiarrhoeal agents or antibiotics before admission. Informed written consent was obtained from the parents before inclusion in the study.

Initial rehydration and subsequent maintenance of hydration was carried out with intravenous fluids only until the gastric emptying test was completed, after which the standard glucose-electrolyte oral rehydration solution was provided if required. Blood samples were analysed for blood count, haemotocrit, electrolytes, creatinine, and protein content. Stool samples were sent for microscopic examination and comprehensive bacteriological culture, and examination for rotavirus by enzyme linked immunosorbent assay (ELISA) technique. The data from those patients from whom only rotavirus and no other pathogens were isolated are presented here. Gastric emptying measurements were made in the acute stage of the disease and in each case, 12 weeks later when the patient was asymptomatic.

ASSESSMENT OF GASTRIC EMPTYING

The double sampling marker dilution technique of George7 was used to measure gastric emptying. This technique requires the determination of marker concentration in gastric samples before and after instillation of a concentrated marker. The gastric volume is calculated from the change in the concentration of the marker, polyethylene glycol (PEG 4000).4 Initial concentration of polyethylene glycol in the test meal was 5 g/l of 5% dextrose in water, and the concentration of polyethylene glycol used for preparing the concentrated marker solution was 50 g/l of 5% dextrose in water. Both the test meal and the concentrated marker solution were freshly prepared each day.

After a six hour fast, a paediatric sized nasogastric tube was passed into the stomach, without any sedation, and then positioned into the most dependent part of the stomach.2 After 15 to 20 minutes resting gastric juice was aspirated, and the stomach washed out with distilled water. Then the test meal (20 ml/kg body wt) was instilled through the nasogastric tube into the stomach within the period of two minutes. At five minutes, a 2-5 ml sample of gastric juice was
aspirated and stored, and 5 ml of the concentrated marker solution was injected into the stomach. Gastric contents were thoroughly mixed over a one minute period by repeated rapid aspiration and re-injection of 15 ml volumes of gastric contents using a 20 ml syringe. After mixing, another 2.5 ml sample was aspirated and stored. This procedure was repeated at 10 minutes, 20 minutes, and then every 20 minutes until the volume of aspirate became less than 2.5 ml. The polyethylene glycol concentration of the stored gastric aspirates was measured by a turbidimetric method. The volume of the test meal remaining at each step was calculated according to the method of Beckers et al which allows volume calculation in the stomach rather than total volume of gastric contents which included gastric secretion, swallowed saliva and the test meal. The calculation procedure of George modified by Siegel et al is as follows:

\[V_{nb} = V_n - \frac{C_{na} - C_{nb}}{C_{na} + C_{nb}} + \frac{1}{2} V_1 \]

where \(V_{nb} \) = volume of gastric contents before adding marker solution; \(V_n \) = volume of gastric contents after adding marker solution; \(C_{na} \) = concentration of polyethylene glycol before adding concentrated marker solution; \(C_{nb} \) = concentration of polyethylene glycol after adding concentrated marker solution; \(C_n \) = concentration of polyethylene glycol in the concentrated marker solution.

Thereafter, the volume of test meal remaining at determination number \(n \) was calculated according to the following general formula:

\[V_{1n} = \frac{A_{nb} - A_1}{A_1 - A_2} \cdot \frac{A_2}{A_2 - A_3} \cdot \frac{A_3}{A_3 - A_4} \cdots \frac{A_{n-1}}{A_{n-1} - A_n} \cdot V_1 \]

where \(V_1 \) = volume of test meal; \(A_{nb} \) = amount of polyethylene glycol in gastric contents before adding concentrated marker solution; \(A_{na} \) = amount of polyethylene glycol in gastric contents after adding concentrated marker solution.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>Clinical characteristics of the study population on admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mo)</td>
<td>9 (6-14)</td>
</tr>
<tr>
<td>Wi age % of NCHS median</td>
<td>81 (76-83)</td>
</tr>
<tr>
<td>Duration of diarrhoea before hospitalisation (h)</td>
<td>36 (20-48)</td>
</tr>
<tr>
<td>Haematocrit</td>
<td>33 (30-37)</td>
</tr>
<tr>
<td>Specific gravity (serum)</td>
<td>1.024 (1.021-1.026)</td>
</tr>
<tr>
<td>Serum Na+</td>
<td>139 (130-142)</td>
</tr>
<tr>
<td>Serum K+</td>
<td>3.9 (3.7-4.1)</td>
</tr>
<tr>
<td>Serum CI-</td>
<td>92 (87-98)</td>
</tr>
<tr>
<td>Serum TCO2</td>
<td>21.8 (18.6-23.0)</td>
</tr>
</tbody>
</table>

Results are expressed as median (range)

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>Percentage of test meal remaining in the stomach at different time intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Min)</td>
<td>During acute illness</td>
</tr>
<tr>
<td>5*</td>
<td>82 (79-90)</td>
</tr>
<tr>
<td>10*</td>
<td>70 (61-86)</td>
</tr>
<tr>
<td>20*</td>
<td>51 (38-76)</td>
</tr>
<tr>
<td>40*</td>
<td>26 (14-33)</td>
</tr>
<tr>
<td>60*</td>
<td>13 (2-35)</td>
</tr>
<tr>
<td>TI2 (min)*</td>
<td>19.5 (14-30)</td>
</tr>
</tbody>
</table>

*p<0.01. Results are expressed as median (range).

The abbreviations used are: \(V \) = volume (ml); \(C \) = concentration of polyethylene glycol (mg/ml). Raised suffixes are: \(a \) = amount of marker in gastric content; \(s \) = gastric contents; \(i \) = marker; \(t \) = test meal. Lower suffixes are: \(n \) = the serial number of observation; \(b \) = before adding the concentrated marker; \(a \) = after adding the concentrated marker.

STATISTICAL ANALYSIS

Fraction of the original volume of test meal remaining in the stomach at the different time intervals were calculated separately for each patient, and mean curves were constructed from the data points. For every time point, gastric emptying patterns in patients during the acute illness and after full recovery from the illness were compared by using Wilcoxon's signed-rank test; also data were submitted to power exponential analysis. The parameters \(t_{1/2} \) and \(\beta \) were estimated from the fitted power exponential curve. According to this model,

\[f = 2^{- (\alpha t_{1/2})^p} \]

where \(f \) is the proportion of the test meal remaining at time \(t \) and \(t_{1/2} \) is the time at which half the original meal has emptied, that is the half time of emptying. The parameter \(\beta \), in the power exponential, determines the shape of the curve.

The half times for emptying \(t_{1/2} \) were calculated from the plotted curves, and the \(t_{1/2} \) in each patient during illness and after recovery were compared by Wilcoxon's paired signed-rank test.

Results

The clinical status of the 10 patients is summarised in Table I. None of the children was malnourished, dehydrated, or had electrolyte imbalance at the time of admission to the study. The volumes of test meal remaining in the stomach after 5, 10, 20, 40, and 60 minutes are summarised in Table II. Significant difference between volumes of the test meal remaining in the stomach during the acute illness and that after full recovery were noted in all the time intervals. Half times of gastric emptying \(t_{1/2} \) calculated from the emptying curves of each gastric emptying test are shown in Table II. A significant delay occurred during the acute stage of illness when compared with the state after recovery (p<0.01). The values of \(\beta \) were 1.08 (0.07) in the acute state, and 1.04 (0.04) after recovery, suggesting that gastric emptying occurred in a nearly simple linear exponential model (Figure). The values of the correlation coefficient \(r^2 \) shows that the curve fitting procedure was satisfactory. The absence of any significant difference in \(\beta \) during the acute illness and that after full recovery suggested that despite the delayed gastric emptying during the acute illness, the pattern of gastric emptying is not different.

Discussion

A marked delay of gastric emptying of liquids occurred in children suffering from acute rota-
Gastric emptying patterns described by mean residual gastric volumes. Results are mean (SD).

Gastric emptying is related to the rotavirus infection and not to any disturbance of the body fluids is evident from the normal serum electrolyte levels. Also, the patients were well hydrated at the time of carrying out the studies, as judged by their haematocrit and serum specific gravity values.

The mechanism of this delay in gastric emptying can not be explained from the present study. Gastrointestinal hormones, such as secretin, gastrin and glucagon can delay gastric emptying but only cholecystokinin is believed to exert its influence at physiological doses. The status of these hormones in rotaviral enteritis is still unknown. Neural pathways influencing gastric emptying mediated by non-cholinergic, non-adrenergic, and partially dopaminergic vagal neurones may also be involved, and alterations in central nervous system controls of gastric emptying cannot be ruled out.

Gastric emptying and food intake are intimately related, and a significant reduction in food intake has been observed in children suffering from acute rotaviral enteritis.

Whether pharmacological modulation of gastric emptying - for example, by cholecystokinin blockers could lead to a reduction in intensity of nausea and vomiting and increased food intake in these children remains to be investigated. Also, despite the prominence of nausea and vomiting in acute rotavirus infection, the fact that the gastric emptying delay is not more severe may explain why oral rehydration therapy remains a rational approach to the management of dehydration in this condition.

We would like to thank J R Hamilton and Klaus Gyr for manuscript review, and M A Majid Khan for secretarial assistance. This research was supported by the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B). The ICDDR,B is supported by countries and agencies which share its concern about the impact of diarrhoeal diseases on the developing world. Current major donors giving assistance to ICDDR,B are: The Aga Khan Foundation, Arab Gulf Fund, Australia, Bangladesh, Belgium, Canadian International Development Agency (CIDA), Canadian International Development Research Centre (IDRC), Danish International Development Agency (DANIDA), France, The Ford Foundation, Japan, The Netherlands, Norwegian Agency for International Development (NORAD), SAREC (Sweden), Swiss Development Co-operation (SDC), United Kingdom, United Nations Development Programme (UNDP), United Nations Children’s Fund (UNICEF), United Nations Capital Development Fund (UNCDF), United States Agency for International Development (USAID), World Health Organization (WHO), and World University Service of Canada (WUSC).

11 Beckers EJ, Rehner NJ, Brouns F, Tenn Hoor F, Saris WHM.
Gastric emptying of liquid in children suffering from acute rotaviral gastroenteritis