Mr 40 000 human colonic epithelial protein expression in colonic mucosa and presence of circulating anti-Mr 40 000 antibodies in cotton top tamarins with spontaneous colitis

K M Das, M Vecchi, L Squillante, A Dasgupta, M Henke, N Clapp

Abstract

Saguinus oedipus, Callithrix jacchus, and Saguinus fuscicolis are three species of New World monkeys which develop a form of colitis that is similar to human ulcerative colitis. Only S oedipus, however, develop colon cancer. We examined intestinal tissues from these animals for the presence of an antigen reacting to the Mr 40 000 human colonic epithelial protein that acts as an autoantigen in ulcerative colitis. Using an anti-Mr 40 000 monoclonal antibody (7E12H12, IgM isotype), by an immunoperoxidase assay we showed that all colon specimens from S oedipus reacted with 7E12H12; however, the colonic tissue from C jacchus and S fuscicolis did not. In immunotransblot analysis eluted IgG antibody bound to human ulcerative colitis colon (CCA-IgG) reacted with Mr 40 000 protein(s) present in the extracts of colon from S oedipus animals and humans. Small intestinal tissue reacted neither with 7E12H12 nor with CCA-IgG. In S oedipus, the Mr 40 000 protein was localised exclusively to colonic epithelial cells. Preincubation of seven S oedipus colon specimens with eight of 10 sera from animals with acute or chronic colitis and 0 of four sera from animals without colitis almost completely inhibited the binding of 7E12H12 to the colonic epithelium. Four of these 10 sera inhibited the binding of 7E12H12 to the autologous colon. These results show the presence of circulating autoantibodies in S oedipus with colitis against an epitope(s) on Mr 40 000 protein shared by human and S oedipus colon.

The study of ulcerative colitis has been greatly hampered by the lack of a suitable experimental animal model for the disease. In recent years the development of spontaneous colitis and superimposed colonic cancer have been described in one species of South American primates (Saguinus oedipus, cotton top tamarin).1,2,3 Interestingly, two other species from the Callitrichidae family (Callithrix jacchus and Saguinus fuscicolis) also show a similar colitis but have never been reported to develop colon cancer.2,4,5 The colitis which apparently develops during the first year or so of life is usually of noninfectious origin, chronic, and can show acute exacerbations.4 Other similarities to human ulcerative colitis have been observed in studies of S oedipus colitis regarding histological features,6,7 mucin biochemistry,7 and lectin histochemistry.7,8 The mechanisms which cause the development of colitis in tamarins are unknown.

We recently described an Mr 40 000 protein in human colon that is specifically recognised by colon bound IgG from patients with ulcerative colitis, called CCA-IgG, and not by tissue bound IgG extracted from Crohn’s disease affected colon and normal IgG.9,10 The Mr 40 000 protein is also recognised by autologous CCA-IgG11 and ulcerative colitis serum IgG.11,12 These data suggest that the Mr 40 000 colon protein acts as an autoantigen(s) in ulcerative colitis.10,13 The protein has been purified from human colon and murine monoclonal antibodies have been developed.14,15 By using one of these monoclonal antibodies the protein has been localised exclusively to human colonic epithelial cells mainly along the basolateral and apical domains of plasma membrane.16

Because of the similarities observed between tamarin and human colitis, we examined the cross reactivity of the Mr 40 000 human colonic protein to tamarin colon tissue by the immunoperoxidase method using an anti-Mr 40 000 monoclonal antibody. The presence of circulating anti-Mr 40 000 antibodies in tamarins with colitis was investigated by an inhibition immunoperoxidase assay. The immunoreactive antigen(s) in tamarin colon is further analysed by immunotransblot analysis using CCA-IgG extracted from human ulcerative colitis colon.

Methods

All tamarins and marmosets were from the colony housed at the Marmoset Research Center, Oak Ridge Associated Universities, Oak Ridge, Tennessee.

Tissue specimens

A total of 66 intestinal tissue specimens from colon (56 specimens) and small bowel (10 specimens) from 24 S oedipus (cotton top tamarin), 10 S fuscicolis (saddle back tamarins), and nine C jacchus (common marmosets) were used for immunoperoxidase experiments. The colonic specimens consisted of multiple samples from right and left colon. The specimens had been obtained at Oak Ridge Associated Universities during endoscopy or at necropsy, fixed in formalin, and embedded in paraffin. Specimens were coded and sent to the Robert Wood Johnson Medical School for the immunoperoxidase assay. Histological interpretations of the specimens were made at Oak Ridge. Tissue
specimens with acute inflammation consisting of mucosal ulcerations, infiltration with polymorphonuclear cells and lymphocytes in the mucosa, and crypt abscesses were considered as acute colitis. Chronic colitis was defined as colonic mucosa showing excess inflammatory cellular infiltrates without much epithelial cell destruction.

For immunotransblot experiments, segments of small bowel and colon obtained from two cotton top tamarins at necropsy were sent. These specimens were prepared following the method previously reported for human colon. Briefly, specimens were minced, washed in phosphate buffered saline (PBS) containing 2 mmol/l ethylenediamine tetra-acetic acid and 2 mmol/l sodium azide and homogenised with a Polytron.

After adding phenylmethylsulphonyl fluoride to a final concentration of 2 mmol/l, the samples were centrifuged at 2000 g for 30 minutes and at 20 000 g for 60 minutes. The resulting protein solution (PBS extract) was used for immunotransblot analysis.

ANTIBODIES

The anti-Mr 40 000 monoclonal antibody (7E12H12, IgM isotype) and an unrelated murine monoclonal antibody of IgM isotype were used in immunoperoxidase experiments. The production and characterisation of the anti-Mr 40 000 monoclonal antibody have been reported previously. For the immunotransblot experiments, tissue bound IgG eluted from two ulcerative colitis colon specimens were used. Colon tissue bound IgG were obtained according to the method previously described. Colon tissue eluted IgG from a patient with Crohn's colitis and purified normal serum IgG were used as control.

SERAS FROM TAMARINS

Fourteen coded sera from cotton top tamarins (S oedipus) were sent from Oak Ridge primate centre for the inhibition-immunoperoxidase assay as described below. These included six sera from cotton top tamarins with clinical and histological evidence of acute colitis, four with chronic colitis, and four without colitis.

IMMUNOPEROXIDASE METHOD

Two 5 μm thick serial sections from each specimen were deparaffinised and rehydrated in decreasing concentrations of ethyl alcohol. The sections were incubated in PBS, pH 7·4, containing 0.3% H2O2 for 30 minutes to block the endogenous peroxidase activity and in 1% normal horse serum for two hours to block non-specific binding of the second antibody to the section. Either anti-Mr 40 000 monoclonal antibody or control monoclonal antibody was then added to the sections and incubated overnight. The sections were successively incubated with biotinylated goat antimouse IgG for 60 minutes and with avidin-biotin-peroxidase complex for 90 minutes. 3'-diaminobenzidine was then added to show the immune reaction. All the incubations were done at room temperature except for the overnight incubation which was performed at 4°C. Extensive washings in PBS, pH 7·4, were done between each incubation. After dehydration and mounting the slides were observed under a light microscope.

To examine the reactivity of 7E12H12 against carbohydrate moiety, we treated parallel tissue sections with neuraminidase (Sigma) (0.1 unit/ml) and periodate (0.1 mol/l solution) before incubation with the monoclonal antibody,
TABLE 1 Results of immunoperoxidase experiments with 7E12H12 on tamarin intestinal tissues

<table>
<thead>
<tr>
<th></th>
<th>No of animals</th>
<th>Sex (M/F)</th>
<th>Mean age</th>
<th>No of specimens</th>
<th>Mean (SD) reactivity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saguinus oedipus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic colitis</td>
<td>10†</td>
<td>4/6</td>
<td>7-2 (0-4-9-7)</td>
<td>16</td>
<td>1·94 (0-82)†</td>
</tr>
<tr>
<td>Acute colitis</td>
<td>13‡</td>
<td>6/7</td>
<td>8-0 (0-4-12-2)</td>
<td>19</td>
<td>1·37 (0-68)</td>
</tr>
<tr>
<td>Normal colon</td>
<td>1</td>
<td>1</td>
<td>0·1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Saguinus fuscicollis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic colitis</td>
<td>9</td>
<td>3/6</td>
<td>8·7 (2-5-14-5)</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Normal colon</td>
<td>1</td>
<td>1</td>
<td>9·1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Callithrix jacchus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic colitis</td>
<td>10</td>
<td>5/5</td>
<td>6·2 (0-1-14-3)</td>
<td>10</td>
<td>0†</td>
</tr>
</tbody>
</table>

*None of the small intestinal specimens from 10 animals reacted with 7E12H12.
†Expressed as the mean of individual scores (0 to 3+). Ranked by two observers (see text) without the knowledge of histological interpretation and the species of animals.
‡Two animals with chronic colitis and one with acute colitis had colon cancer.
§All colon specimens from S oedipus species were positive with some variations in the intensity (1+ to 3+); p<0·05 chronic colitis vs acute colitis.
||Several deep glands were positive only in two of the 10 specimens.

INHIBITION IMMUNOPEROXIDASE ASSAY
Serial sections of colon from seven S oedipus animals (three with chronic colitis and four with acute colitis) were incubated overnight at 4°C with the 14 sera from S oedipus animals with colitis (10 sera: six acute and four chronic) and without colitis (four sera) as described above. The sections were washed in PBS and then incubated with 7E12H12 following the same protocol as described above under immunoperoxidase method. Parallel sections were incubated overnight with PBS without the addition of S oedipus serum followed by 7E12H12.

IMMUNOTRANSBLOT
The protein solutions from small and large intestine of tamarins and human colon (PBS extracts) were subjected to 10% sodium dodecyl-sulphate-polyacrylamide gel electrophoresis and electrophoretically transferred to nitrocellulose paper.
Figure 3: Saguinus oedipus colon from an animal with acute colitis (immunoperoxidase, original magnifications × 10 in (A) and × 40 in (B)). Reduction of 7E12H12 immunoreactivity with 'patchy' pattern is evident when compared with Figure 1A.

Figure 4: Saguinus oedipus colon from an animal with acute colitis (immunoperoxidase, original magnifications × 10 in (A) and (C) and × 40 in (B) and (D)). Immunoreactivity of 7E12H12 against the colonic epithelium (A&B) is completely blocked by preincubation of the serial sections of the same colon specimen (C&D) with serum from an S oedipus animal with acute colitis, suggesting the presence of circulating antibody against the shared epitope reactive to 7E12H12.
Results
All colonic specimens examined came from animals with chronic or acute colitis except two (one 5 week old *S oedipus* and one 9-1 year old *S fuscicollis*) which showed no findings of colitis. All *S fuscicollis* and *C jacchus* animals had mild chronic colitis. Thirteen of 24 *S oedipus* had acute colitis (Table I).

IMMUNOPEROXIDASE EXPERIMENTS
The anti-Mr 40 000 monoclonal antibody (7E12H12) reacted with each of the 36 colonic specimens from *S oedipus* (Table I and Fig 1A). The only *S oedipus* colon specimen without colitis showed moderately strong reactivity (2+) with 7E12H12 in the colonic epithelial cells, similar to what was observed in *S oedipus* with chronic colitis. However, none of the 10 small bowel specimens from the animals reacted with 7E12H12 (Fig 1B). Neither small bowel nor colonic specimens reacted with the unrelated IgM monoclonal antibody used as negative control. In *S oedipus* the reactivity was localised exclusively to colonic epithelial cells in the crypts and along the lumen (Fig 1A). No appreciable difference in the pattern and intensity of staining was seen between right and left colonic specimens except in a few animals. After treatment with neuraminidase and peroxidase, the immunoreactivity of 7E12H12 did not change and increased somewhat in several colon tissues, suggesting a better access to the peptide-epitope by the antibody.

In contrast to *S oedipus* colon none of the 10 colonic specimens from *S fuscicollis* reacted with 7E12H12 (Table I, Fig 2). Eight of the 10 colonic mucosal specimens from *C jacchus* did not react with 7E12H12 (Table I). In the remaining two the colonic mucosal epithelium lining the lumen and the glands close to the lumen were totally negative. However, several glands at the deeper level close to the muscularis mucosa were positive (data not shown).

Reduction in the staining intensity with 7E12H12 was observed in colonic specimens from *S oedipus* animals with acute colitis compared with specimens from animals with chronic colitis (p<0.05) (Table I). Age and sex distribution did not significantly differ in the two groups of animals (Table I). The staining pattern in acute colitis specimens seemed to be 'patchy,' since some areas showed a pronounced reduction of reactivity with the monoclonal antibody (Fig 2).

presence of antibodies in *S oedipus* sera against Mr 40 000 protein-epitope(s)
(inhibition immunoperoxidase assays)
Five of six sera from *S oedipus* with acute colitis (Fig 4) and three of four with chronic colitis almost completely inhibited the binding of 7E12H12 to all the seven *S oedipus* colonic tissue (Table II). However, none of the four sera from *S oedipus* without colitis changed the immunoreactivity of 7E12H12 against colon tissue. Four of the 10 sera from *S oedipus* with colitis came from the same four animals whose colon tissues were among the seven used for the inhibition immunoperoxidase assay. These four sera also almost completely inhibited the binding of 7E12H12 to the autologous colonic epithelium (Table II).

IMMUNOTRANSLBLOT EXPERIMENTS
The autoradiograph from the translblot experiment performed with extracts from tamarin large and small intestine is shown in Fig 5. When tamarin large intestinal extracts were probed with CCA-IgG the immunoreactivity was observed at Mr 40 000 (lane A2). Tamarin small intestinal extracts did not react with the CCA-IgG (lane A1). Lane A3 shows reactivity of CCA-IgG with a human colon extract.

No reactivity was observed when tamarin small and large intestinal extracts (B1 and B2 respectively) and human colon extract (B3) were probed with IgG extracted from the colon of a patient with Crohn’s disease of the colon.

Discussion
The colitis which spontaneously develops in cotton top tamarins shares several features with human ulcerative colitis. The clinical course, the histological findings, the reduction in specific glycoprotein classes, and the pattern of lectin histochemistry reported in tamarin colitis are strikingly similar to those observed in human colitis.

The results of the present study indicate an additional structural similarity between the colonic mucosa of cotton top tamarins, a model of chronic colitis, and human ulcerative colitis. Furthermore, this study shows that sera from tamarins with colitis contain autoantibodies reactive to the Mr 40 000 protein-epitope as also observed in human ulcerative colitis. The Mr 40 000 colon protein or cross reactive epitopes (Table II) related to this protein, which are recognised by anti-Mr 40 000 monoclonal antibody as well as ulcerative colitis colon eluted antibody (CCA-IgG), are present in the colonic tissue from tamarins. This is shown both by an immunoperoxidase assay, using 7E12H12 monoclonal antibody and by the immunotransblot study using CCA-IgG. In the immunotransblot experiments the CCA-IgG reacted with an Mr 40 000 protein present in tamarin colon as well as human colon. As in humans, the protein seems to be uniquely associated with colonic tissue, since tamarin small bowel specimens did not react with either the anti-Mr 40 000 monoclonal antibody by immunoperoxidase assay or the CCA-IgG by immunotransblot analysis. The expression of the Mr 40 000 protein in the

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>Sera from S oedipus with:</th>
<th>No of samples</th>
<th>No of sera that blocked the binding of 7E12H12 to S oedipus colon tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute colitis</td>
<td>6</td>
<td>4* 80%</td>
<td></td>
</tr>
<tr>
<td>Chronic colitis</td>
<td>4</td>
<td>1* 25%</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*Two sera in each group inhibited the binding of 7E12H12 to autologous colon tissue.
Figure 5: An autoradiograph from transblot experiments after exposure for 24 hours: phosphate buffered saline extracted proteins from tamarin small intestine (lanes A1B1), large intestine (lanes A2B2), and human colon (lanes A3B3) were probed with IgG eluted from the colon of a patient with ulcerative colitis (CCA-IgG) (panel A) and colon eluted IgG from a patient with Crohn's disease involving the colon (panel B). Immunoreactivity is observed at Mr 40000 areas in lanes 2 and 3 containing colon extracts from tamarin and human respectively. Tamarin small intestinal extract did not react. Eluted IgG from the colon specimen with Crohn's colitis also showed no reactivity.

Experimental animals such as mice and rats was also observed only in colonic epithelium and not in the small intestinal mucosa. The immunoreactivity, as detected by the immunoperoxidase method, is localised to colonic epithelial cells, both in the crypts and along the luminal surface. This pattern of localisation of the protein in tamarin colon is similar to what is observed in humans. The localisation and the expression of the Mr 40000 cross reactive epitope(s) were similar in normal colon specimens and in chronic colitis specimens from S oedipus. The expression of the Mr 40000 protein was also similar in specimens obtained from the right and left colon. This differs from what is observed in humans, where an increase of the immunoreactivity in the distal colon and rectum is seen.

An important difference in the expression of Mr 40000 cross reactive epitopes was observed between S oedipus versus S fuscicollis and C jacchus, the two species which do not develop colon cancer but may develop colitis.

The nature and similarity of the colitis in these two species compared with S oedipus have been debated. It is intriguing that while each of the 36 colon specimens from all S oedipus animals were reactive to 7E12H12, none of the 10 specimens from S fuscicollis and eight of the 10 C jacchus colon specimens did not react with 7E12H12. This finding shows a major difference in colonic mucosa among these species. Differences among the three species have also been observed by lectin histochemistry of colonic mucosa.

Specimens from S oedipus animals with acute colitis showed an appreciable reduction of immunoreactivity compared with specimens from normal colon or chronic colitis. This finding could be due to desctruction of the normal glandular epithelium associated with acute colitis. In addition, the cross reactive epitopes may also be blocked by the anti-Mr 40000 autoantibodies.

Eight of 10 (80%) sera from cotton top tamarins with colitis (both acute and chronic) contained circulating antibody against the shared epitope on Mr 40000 colonic epithelial protein reactive to 7E12H12 monoclonal antibody. These included four sera from autologous animals whose colon tissue was examined with their own sera. None of the sera from normal animals showed such immunoreactivity against tamarin colon tissue.

Future studies are needed to clarify the role of
this epithelial autoantigen, the Mr 40,000 cross reactive protein(s) in the pathogenesis of colitis in tamarins. A better understanding of the pathogenetic mechanism involved in tamarin colitis may provide relevant clues for the study of human ulcerative colitis.

The work was supported in parts by the National Foundation for Ileitis and Colitis, by a research grant from the University of Medicine and Dentistry of New Jersey Research Foundation, and by the New Jersey Cancer Commission. The authors wish to acknowledge excellent secretarial assistance from Ms Sharon Hunt and Mrs Rochelle Golub.

9 Boland CR, Clapp NK. Glycoconjugates in the colons of New World monkeys with spontaneous colitis: association between inflammation and neoplasia. Gastroenterology 1987; 92: 625-34.
19 Biancone L, Wise LS, Das KM. The presence in experimental animals of a colon specific Mr 40,000 protein(s) with relevance to ulcerative colitis. Gut 1991; 32: 504-8.