Hepatic aberrations in patients with chronic pancreatitis

EDITOR.—The article by Jalil et al describes a high frequency of portal tract changes in operative liver biopsy specimens from 52 patients undergoing surgery for chronic pancreatitis (alcoholic aetiology 77%). A study by our group in 1986 recorded the same phenomena in 18 cases and in eight cases and acute on chronic in 30 cases. The portal tracts were abnormal in 28 cases (74%): the changes included diffuse lymphocytic infiltration, focal bile duct proliferation, focal ductopenia, and features suggestive of primary sclerosing cholangitis or primary biliary cirrhosis. We also noted subtle changes, including siderosis, in hepatocytes occupying 10–100% of parenchyma in 23 cases (60%). The abnormal cells were hemi- or large and water clear and sometimes had the typical appearance of ground glass hepatocytes.

We suggested: (a) that the aberrations in hepatic portal tract bile induction from chronic exposure to xenobiotics with superimposed damage from toxic metabolites; (b) that the portal tract disturbances were initiated by the entry of excessive amounts of bile and other toxic metabolites in bile. Support for enzyme induction came from parallel studies of drug metabolism and hepatic morphology. The idea of toxic metabolite related damage was reinforced by biochemical evidence of excessive deposition of lipofuscin and microvesicular steatosis, or both, and dilated endoplasmic reticulum on electron microscopy; together with biochemical evidence from patients known to have malignant disorder markers in secretin stimulated bile. With regard to the possible connection between increased outputs of reactive intermediates in bile and initiation of portal tract inflammation, there is evidence that free radical activity causes alteration in the structure of gamma-glutamyltranspeptidase. The longstanding preoccupation of pancreatologists with the idea that abnormal bile may reflux into the pancreas and initiate damage therewith, led us initially to take the argument further in that direction. Only when surgical diversion of this abnormal bile failed to stop the course of pancreatitis in three patients8 did it appear that pancreatic and liver damage proceeded independently.

If reflux, however, was also to occur—as was shown unequivocally in one of those patients9—it would be expected to compound damage in the head of the gland. Of further interest was the finding that pancreatic acinar cells from that patient (who had had a Whipple operation) showed microvesiculation very similar to that in his hepatocytes. Immunocytochemistry of tissue fragments from subsequent patients, and organ donor controls, have now proved the constancy of hepatic and pancreatic cytochrome P450 induction in patients with chronic pancreatitis,5 while clinical trials, both anacolus6 and placebo controlled,10 have shown the value of antioxidant supplementation in controlling symptoms. The concept that oxidative stress, through induced cytochromes P-450 in pancreatic cells, is central to the pathogenesis of chronic pancreatitis rationalises the recent report from Bourliere et al in the same issue of Gut.11 The authors concluded that cigarette smoke and alcohol are distinct risk factors for pancreatic damage in chronic pan-creatitis, but not in chronic alcoholism. Whereas ingested xenobiotics such as alcohol would preferentially reach the liver, inhaled xenobiotics would strike the pancreas directly. The concept predicts that diets enriched in corn oil, a potent inducer of cytochrome P-450, should facilitate the development of an experimental model of chronic pancreatitis.12

Free radicals are not the only tissue damaging principle: others include proteases and phospholipases from inflammatory cells, and cytolytic properties of a complement cascade. The corollary is that the outcome of oxidative stress is different within different organs—depending upon the inherent antioxidant capacity, as well as the exploitive capacity of resident macrophages and immune systems to amplify and perpetuate injury. The liver with its generous quota of each of these systems is in a most vulnerable position to resect evidence of the harmful cellular destruction from oxidative stress but, paradoxically, may display the kind of subtle changes that have now been documented in portal tracts and macrophages. We find it difficult to accept the alternate explanation by Jalil et al that these changes are secondary to inflammatory of the pancreas, for the reasons discussed above.

N Y HABOUBI
Withington Hospital, Manchester (4)
FH ALI
Royal Infirmary, Huddersfield
J M BRAGANZA
Royal Infirmary, Oxford Road
Manchester M13 9WL

Correspondence to: Dr J M Braganza

LETTERS TO THE EDITOR

Reply

EDITOR.—Thank you for the opportunity to respond to the above correspondence. We find no conflict in the information presented in the two studies. Rather, comparison with the study recently reported from our laboratory and that previously reported by Drs Haboubi, Ali, and Braganza reveals many important similarities.

Portail lymphopothy. It is of interest that, in this paper by Haboubi et al, they describe long-term infection of portal tracts as the main abnormality in 74% of this patient group. This high incidence of portal lymphopothyosis is similar to the incidence reported in particular papers in these two studies (not discussed). The importance of our study is not only the presence of chronic inflammatory cells but also the finding that they are almost exclusively lymphocytes and that they occur in excess numbers in an organ that shows no evidence of cell mediated cytotoxic damage.

Hepatocyte morphology. The report of Haboubi et al included 30 cases of chronic pancreatitis (20 men, 10 women) with a mean age identical to that of our study (41 years). In their study, liver biopsy was performed at variable intervals after an acute attack of pancreatitis whereas, in our series, liver biopsy was performed intraoperatively when all patients were free of alcohol for several weeks and their disease was clinically quiescent. It is hardly surprising, therefore, that mild acute morphological changes to hepatocytes, predominantly steatosis and intracellular oedema, should be more frequent in their study than in ours (60% v 42%).

Toxic metabolite theory. The hypotheses of Dr Braganza and her colleagues concerning the possible effects of toxic metabolites on hepatocellular function in chronic pancreatitis are well known. The reports described in their series published in 1986 do not conflict with the data recently published in our recent study. Unfortunately, their paper does not fulfil Koch’s postulates by demonstrating a causal relationship between morphological changes in hepatocytes and coincidental abnormalities in drug metabolism. No paired study was performed to control the effect of alcohol on the liver in the absence of chronic pancreatitis and hence to assess the effect of alcohol on the data.

Aetiology of chronic pancreatitis. We certainly agree with the statement from Dr Braganza and coworkers that the pathogenesis of chronic pancreatitis is unclear and that abnormal bile reflux into the pancreatic duct is unlikely to initiate the disease. Our paper has not discussed the pathogenesis of hepatic dysfunction in chronic pancreatitis since, even in those patients with a history of excessive alcohol consumption, the true aetiology of their disease is presently uncertain.

C S FOSTER
RCN WILLIAMSON
Depository of Haematology,
Royal Postgraduate Medical School, Royal Postgraduate Medical School, 72 Kew Road, London W12 0NN

Gut: first published as 10.1136/gut.33.11.1581-a on 1 November 1992. Downloaded from http://gut.bmj.com/ on September 15, 2023 by guest. Protected by copyright.
Helicobacter pylori infection rates in relation to age and social class in a population of Welsh men

EDITORS,—We previously reported results from a study looking at the prevalence of Helicobacter pylori IgG antibodies in a population of 749 randomly selected men, aged 30–75 years, from Caerphilly, South Wales. Evidence has recently been presented to suggest that acquisition of H pylori infection is related to childhood living conditions.1 In our study, information was available on current and past household size for 563 men and we have now analysed this in relation to antibody prevalence. There was a strong linear trend between antibody prevalence and the number of the subjects’ siblings (see Table). This is consistent with the reported relationships between antibody prevalence and childhood domestic crowding2 and sharing a bed as a child.3 We found no relationship between antibody prevalence and the number of children currently sharing the same household as the subject (unlike Mendall et al.),4 nor was there a relationship with the number of adults currently sharing the household (consistent with Mendall et al.).

The associations observed in the two studies2,5 and our own suggest that early social environment may be of particular significance in relation to H pylori transmission. If H pylori infection occurs primarily as a result of childhood contact, then the positive relationship between H pylori prevalence and age, which has been repeatedly observed,5 may partly reflect a decrease in childhood acquisition rates over time—that is, a cohort effect.1 Such an effect is illustrated in the data from Caerphilly (see Figure) which shows the prevalence of H pylori by decade of birth and social class (this was previously presented by age and social class). The prevalence was extremely high in those born at the beginning of the century, decreasing during successive birth cohorts, with the decline being most rapid for those in upper social class groups. We suggest that if early childhood is a particularly critical period for acquisition of H pylori infection then improvements in living conditions will have resulted in reduced acquisition rates in the United Kingdom during the century as seen in the Figure. Such a pattern of declining infection would be consistent with decreases in suspected H pylori associated diseases, notably duodenal ulcer5 and gastric cancer6 observed in the United Kingdom in recent decades.

<table>
<thead>
<tr>
<th>Year of birth</th>
<th>Social class (I & II)</th>
<th>Social class (III)</th>
<th>Social class (IV)</th>
<th>Social class (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910–19</td>
<td>60–69</td>
<td>55–59</td>
<td>55–64</td>
<td>65–69</td>
</tr>
<tr>
<td>1920–29</td>
<td>65–74</td>
<td>60–69</td>
<td>55–64</td>
<td>70–79</td>
</tr>
<tr>
<td>1930–39</td>
<td>70–79</td>
<td>65–74</td>
<td>60–69</td>
<td>75–85</td>
</tr>
<tr>
<td>1940–49</td>
<td>75–85</td>
<td>70–79</td>
<td>65–74</td>
<td>80–90</td>
</tr>
<tr>
<td>1950–59</td>
<td>80–90</td>
<td>75–85</td>
<td>70–79</td>
<td>90–100</td>
</tr>
</tbody>
</table>

Table Total number of men and number (%) positive for Helicobacter pylori IgG antibodies in Caerphilly by number of siblings and by number of children (aged <17 years) and number of adults (≥17 years) in current household.

<table>
<thead>
<tr>
<th>Total No of men</th>
<th>No (%) of men positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of siblings</td>
<td>0–1 150 59 (39–3)</td>
</tr>
<tr>
<td>2–3 193 101 (52–3)</td>
<td></td>
</tr>
<tr>
<td>>3 220 138 (62–7)</td>
<td></td>
</tr>
<tr>
<td>Number of children in current household</td>
<td>0–1 367 210 (57–2)</td>
</tr>
<tr>
<td>2–3 73 (44–5)</td>
<td></td>
</tr>
<tr>
<td>>3 32 15 (46–9)</td>
<td></td>
</tr>
<tr>
<td>Number of adults in current household</td>
<td>1–2 361 175 (48–5)</td>
</tr>
<tr>
<td>3–5 171 70 (59–8)</td>
<td></td>
</tr>
<tr>
<td>>5 45 53 (62–4)</td>
<td></td>
</tr>
</tbody>
</table>

1 Adjusted for age (30–34, 35–44, 45–54, 55–64, 65–69) and social class (I and II, III, IV and V).

 acquisition of H pylori infection then improvements in living conditions will have resulted in reduced acquisition rates in the United Kingdom during the century as seen in the Figure. Such a pattern of declining infection would be consistent with decreases in suspected H pylori associated diseases, notably duodenal ulcer and gastric cancer observed in the United Kingdom in recent decades.

Helicobacter pylori infection rates in relation to age and social class in a population of Welsh men

Sulphasalazine in ulcerative colitis

EDITORS,—A recently completed review is strongly supportive of the opinion expressed in the leading article,1 that the mechanism of therapeutic action of sulphasalazine in inflammatory bowel diseases is different from that of various newer sulphapyridine free 5 aminosalicylic acid (5ASA) preparations. The review2 which studies anti-inflammatory drug treatment of radiation induced damage has shown that both acute and chronic enterocolitis responded favourably to sulphasalazine in all series published to date.3 In direct contrast,4 SASA administered orally (Baugham CA, et al., unpublished data), in enemas5 or suppositories6 was, at best, ineffective and tended to cause symptomatic worsening of radiation enterocolitis.

The inflammatory reactions of the gut to ionising radiations have not been well characterised. They differ from those of the idiopathic inflammatory bowel diseases because in radiation enteritis both subjective and objective improvement has been found in response to non-steroidal anti-inflammatory drugs including aspirin.7 This suggests that the endogenous cyclooxygenase products are deleterious, unlike in idiopathic inflammatory bowel diseases.8 The difference, however, in therapeutic effectiveness between sulphasalazine and SASA shown for a common complication of radiotherapy to the abdomen or pelvis illustrates well a basic divergence in the respective modes of drug action.