adult human liver, and have since investigated expression in a number of other fetal tissues. We found evidence of expression in tongue, brain, intestine, mandible, eye, sternum, pancreas, spleen, and in placenta and umbilical cord, but not in adrenals, thymus, skin, or lung; high expression, however, was only observed in liver, intestine, and placenta. This pattern makes its unlikely that expression of the 6 Kbp HGF mRNA merely reflects haemopoietic activity. Finally, for completeness there are now two mRNA species for HGF, the most recently described being an alternatively spliced 1.5 Kbp transcript with an identical 5 prime cDNA sequence for the first 856 nucleotides downstream of the translation initiation codon, but completely divergent at the 3 prime end. In summary, although the concept that only one growth factor is entirely responsible for liver regeneration is outmoded, the insights and initial observations of the HGF story seem likely to have an impact on our understanding of benign and perhaps malignant liver cell growth for many years to come.


Is gastric emptying faster or slower in patients with early stage of non-insulin dependent diabetes mellitus?

Sir,—I have read with keen interest two recent reports on the effect of hyperglycaemia and gastric emptying.1,2 Though these two studies differed in the subjects recruited and the techniques and design, they were centred on the same theme and, interestingly enough, the authors reached opposite conclusions.

Phillips et al showed much more rapid gastric emptying in patients with early non-insulin dependent diabetes mellitus (less than two years disease duration). Their study is based on scintigraphic measurement of the emptying rate of a liquid glucose meal from the stomach. The approach is straightforward and impeccable. The physiological response during the study period was not very different from the real-life situation of patients with diabetes mellitus. However, their speculation on the role of rapid gastric emptying in the aetiology of non-insulin dependent diabetes mellitus is unfounded and too fanciful. It has been shown that insulin secretion is reduced in response to gastric emptying of a glucose load in healthy subjects. Rapid gastric emptying, as in patients with dumping syndrome, definitely reduces the glycemic responses but these patients are not insulin resistant unlike other diabetes patients unless risk factors such as obesity coexist.

Fraser et al,3 based on localised gastro-duodenal manometric measurement of healthy subjects in whom hyperglycaemia was induced with dextrose, found that there were no differences between hyperglycaemia stimulated pyloric contraction and suppressed antral motility. They concluded that hyperglycaemia delayed gastric emptying, but acknowledged that the motility of the proximal stomach, which was not assessed in the study, might play an important role in determining the rate of gastric emptying. Therefore, too many loopholes were left unfilled when the authors tried to generalise from data on localised motility and contraction to give an overall picture of gastric emptying. By the same token, caution must be exercised when results from acutely hyperglycaemic normal subjects are compared to diabetic patients. Hyperinsulininaemia by itself will affect the motility of the gastrointestinal tract.4

Although the conclusions reached by these studies are exactly contrary, they do not necessarily contradict each other. The differences cannot be attributed to the consistency of the food or intraluminal acidic pH as these have either no effect on or may even delay gastric emptying time.1,2 Fraser's work actually showed the predominantly suppressive effect of a raised blood glucose concentration on the emptying rate of the antrum, whereas Phillips' study included the effect on paracolic control by the emptying curve in response to an oral glucose load. These two mechanisms act in opposition, and presumably in non-insulin dependent diabetes mellitus patients the paracolic control is more dominant. Continuous hyperglycaemia may partially blunt the acute suppressive effect of a surge in blood sugar on the gut vagal tone. Hence the loss of the negative feedback to the stomach fails to "brake" the metabolic outpouring of glucose into the intestine and further reduces the glycemic response in diabetic patients.

Lastly, I would like to share my anecdotal observation of hyperglycaemia and diarrhoea in the early stage of type 2 diabetes. I keep some allonax-induced diabetic rats in metabolic cages for microalbuminuric study. The rats with poorer metabolic control were incidentally found to suffer from diarrhoea (large daily output of loose stools with an offensive smell). Perhaps this dumping like syndrome may play some role in the diarrhoea of early diabetes.

I. V. M. CHUNG
Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic, Hung Hom, Kowloon, Hong Kong


Reply

Sir.—We believe that there is no discrepancy between the results reported in our study and those reported by Phillips et al as they address different issues. The first concerns the motor effects of hyperglycaemia in healthy humans, while the second relates to the control of gastric emptying rates in patients with diabetes mellitus.

In the study by Phillips et al,4 gastric emptying of a liquid meal was found to be accelerated in nine patients with type 2 diabetes mellitus who did not meet criteria of pH dependent diabetes mellitus. The initial emptying rate of liquid meals is delayed in about 40% of patients with diabetes mellitus,5 the initial emptying rate of liquid meals is accelerated in some patients.6 It has been suggested that rapid liquid emptying in diabetes mellitus may reflect impaired proximal stomach adaptation to distension.7 We have reported that in diabetes mellitus, gastric emptying is slower at increased blood glucose concentrations,8,9 indicating that diabetic patients are less able to control and does not always reflect irreversible nerve damage. While this observation is not surprising (induced hyperglycaemia is known to slow gastric emptying in normal subjects),10 it indicates that studies of gastric emptying in diabetic patients should take into account blood glucose concentrations. Thus, while the report by Phillips et al is interesting, the data presented in the results and the discussion of their paper are difficult to interpret.

In our recent study,9 induced hyperglycaemia resulted in a pattern of autonomic nervous system mediated gastric motility associated with slow gastric emptying in normal subjects.10 It seems reasonable to suggest that hyperglycaemia may account for...