Abnormal visceral autonomic innervation in neurogenic faecal incontinence

C T M Speakman, M A Kamm

Abstract
Changes of denervation in the anal sphincter striated and smooth muscle in patients with neurogenic faecal incontinence are well established. This study aimed to determine if there is also a more proximal visceral autonomic abnormality. Thirty women with purely neurogenic faecal incontinence (prolonged pudendal nerve latencies and an intact sphincter ring) and 12 patients with neuropathic changes together with an anatomical disruption were studied. Two control groups consisted of 18 healthy volunteer women and 17 women with normal innervation but an anatomically disrupted sphincter. Rectal sensation was assessed using balloon distension and electrical mucosal stimulation, and anal sensation by electrical stimulation. Rectal compliance was studied to determine whether sensory changes were primary or caused by altered rectal wall viscoelastic properties. Anal canal pressure changes in response to both rectal distension and rectal electrical stimulation were measured to assess the intrinsic innervation of the internal anal sphincter. Patients with neurogenic incontinence alone had impaired rectal sensation to distension (53.1 ± 31.5 ml, p<0.05, neurogenic v controls) and to electrical stimulation (24.4 ± 14.8 mA, p<0.005). Patients with neurogenic incontinence and sphincter disruption also showed impaired sensation compared with healthy controls (55.8 ± 31.5 ml, p<0.05 and 22.9 mA ± 14.8 mA, p<0.05). Patients with only a disrupted sphincter had normal visceral sensation to both types of testing. Both rectal compliance and the response of the internal anal sphincter to rectal distension and electrical stimulation were normal in all patient groups. This study suggests that there is a visceral sensory abnormality in patients with neurogenic incontinence which is not caused by altered rectal compliance. As evaluated in this study the intrinsic innervation of the internal anal sphincter is not affected in this process.

Subjects
PATIENTS
Fifty nine women with incontinence to solid stool referred to St Mark’s Hospital were studied. Maximum resting anal pressure and maximum voluntary contraction pressures were measured using a closed, water filled system with a 4 mm diameter microballoon connected through a 2 mm non-compliant plastic catheter to a pressure transducer (Medex MX-848, Rossendale, UK) and a chart recorder (Devices MX4-73). To establish the presence of impaired innervation of the sphincter muscles pudendal nerve terminal motor latencies and single fibre electromyography of the external anal sphincter were performed using methods described previously.

To exclude a disruption of the striated external anal sphincter ring concentric needle electromyography (mapping) was performed by multiple needle insertions. Defects of the internal and external anal sphincters were further evalu-
TABLE 1 Obstetric details of patients and control subjects

<table>
<thead>
<tr>
<th>Age (y) (range)</th>
<th>Healthy controls (n=18)</th>
<th>Sphincter defect (n=17)</th>
<th>Neurogenic incontinence (n=30)</th>
<th>Dual pathology (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean number of obstetric deliveries</td>
<td>1-2</td>
<td>1-8</td>
<td>2-4</td>
<td>2-6</td>
</tr>
<tr>
<td>% Who had a forceps delivery</td>
<td>11</td>
<td>75</td>
<td>70</td>
<td>33</td>
</tr>
<tr>
<td>% Who had a recognised obstetric tear during delivery</td>
<td>0</td>
<td>58</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>% Previous hysterectomy</td>
<td>6</td>
<td>17</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>% With current urinary incontinence</td>
<td>0</td>
<td>20</td>
<td>69</td>
<td>50</td>
</tr>
</tbody>
</table>

HEALTHY CONTROLS
Eighteen healthy volunteer women (mean age 37 years, range 24-61) were studied: none had a history of constipation or incontinence. Anal pressures and pudendal nerve latency measurements were performed and all were within the normal range.

The study was approved by the ethics committee of the City of Hackney Health Authority and all subjects gave informed consent.

Methods
The following tests were carried out in patients and control subjects:

RECTAL SENSATION TO DISTENSION
A lubricated rubber balloon was placed in the rectum approximately 4 cm above the anal canal then inflated and deflated to 'seat' it properly in the rectum. The balloon was then distended with air and the patient asked to report the initial sensation (sensory threshold), the sensation of urgency, and the maximum tolerable volume.

RECTAL SENSATION TO ELECTRICAL STIMULATION
Rectal mucosal stimulation was assessed using the technique previously described. The electrode was positioned in the rectum 10 cm from the anal verge and a stimulus of 10 Hz and 500 μs seconds used with a gradually increasing current until the subject was able to perceive the stimulus. The stimulus was usually described by the patient as a throbbing or filling sensation. The test was repeated three times and the lowest current perceived was recorded.

ANAL SENSATION TO ELECTRICAL SENSATION
Sensation in the anal canal was assessed using a bipolar ring electrode (Dantec 21L10, Bristol, UK) mounted on a 14 G Foley catheter. The electrode was sited in mid-rectal canal and connected to a constant current stimulator (Neuro-matic 2000M, Dantec, UK). Stimuli of 5 Hz and 100 μs seconds were applied to the anal canal and the current was gradually increased until the patient was able to feel the stimulus, which in the anal canal was perceived as a tingling or pricking sensation. The minimum current in millamps at which the initial sensation was felt was noted after repeating the test three times.

RECTAL COMPLIANCE
This was studied using a 10 cm long balloon constructed from a condom attached to a double lumen polyvinyl catheter, diameter 2.5 mm (14J O81, Porges, France). One lumen was connected to a peristaltic pump (Watson-Marlow, Falmouth, Cornwall) while the other was connected to a pressure transducer (Medex MX-848) and the output recorded on a chart recorder (Devices MX4-73). The balloon was distended with water at a rate of 50 ml per minute independent of intraballoon pressure. The chart recorder paper speed was 50 mm/minute, allowing easy calculation of the volume at any point of the recording.

![Figure 1: Rectal and anal canal pressures during rectal distension at a rate of 50 ml per minute.](http://gut.bmj.com/)
Figure 2: Electrical stimulation induced anal relaxation.

Before each study the compliance of the balloon was calculated by distension of the balloon outside the patient. Intrarectal pressures at different volumes were then calculated by subtraction of the balloon pressures measured outside the patient from those recorded during the patient study. The pressure within the condom reached a pressure of 15–18 cm H₂O at 100 ml and remained constant thereafter.

With the subject in the left lateral position, the pressure in the empty rectal compliance balloon was ‘zeroed’ at the level of the anal verge and then inserted into the rectum. To measure anal pressure at the same time a microballoon pressure catheter was then placed in the anal canal at the site of the maximum resting anal pressure. This 4 mm microballoon was connected to another pressure transducer in a closed water filled system, and the pressure recorded simultaneously with the intrarectal pressure on the chart recorder (Fig 1).

During rectal distension, from 0 to the maximum tolerable volume, both the intrarectal balloon volume and pressure were noted at 50 ml intervals. They were also noted at the volumes which produced a sensation of urgency and maximum tolerable volume. The compliance (dV/dP) between 100 ml and the maximum tolerable volume was calculated by dividing the change in balloon volume by the corresponding change in pressure.

Rectal distension induced anal relaxation
During rectal distension the resting anal pressure recorded by the microballoon in the anal canal fell. To compare the responses of the internal anal sphincter to rectal distension in the different patient groups the rectal volumes and pressures at the point of the initial fall in resting pressure were noted.

Temperature and rectal compliance
The effect of temperature on rectal compliance was assessed. In eight of the control subjects rectal compliance was performed using water at two different temperatures – at room temperature (19–22°C) and at 37°C. There was an interval of 10 minutes between recordings.

ELECTRICAL STIMULATION INDUCED ANAL RELAXATION
This study was designed to quantitate the rectal wall current required to produce internal anal sphincter relaxation. The bipolar ring electrode (Dantec 21L10, UK) mounted on a 14 G Foley catheter was inserted into the rectum to lie 6 cm above the upper limit of the anal canal. The microballoon was reintroduced into the rectum and using the stationary pull through technique the site of maximum resting anal pressure was determined. The microballoon was left at this site and a stable pressure recording was obtained. The electrode was connected to a constant current stimulator (Neumatic 2000M, Dantec, UK). A stimulus of 20 Hz frequency and 1 millisecond pulse duration was applied to the rectal wall, as described previously.23-24 The initial stimulus was 2.5 mA and this was increased by increments of 2.5 mA, allowing approximately 1 minute between each stimulation. The maximum stimulus applied was 40 mA or less if the stimulus was uncomfortable or three successive stimuli produced no further relaxation of the sphincter. Each stimulus was applied until maximum relaxation for that amplitude stimulus was achieved and the pressure had started to return to the baseline. When three successive stimuli failed to produce any greater fall in anal pressure (sphincter relaxation) no further stimulations were performed (Fig 2).

STATISTICAL METHODS
Normal distribution of the data was checked with the Wilk-Shapiro test of normality and the means were compared using student’s unpaired t test. Data are presented as mean (SEM). Data that were not normally distributed were compared using the sign rank test.

Results
RECTAL SENSATION TO DISTENSION
The mean sensory threshold volume in those with neurogenic incontinence alone and those with dual pathology was significantly higher than in controls (Fig 3). Patients with an anatomically disrupted sphincter but normal innervation did not differ from normal.

Figure 3: Rectal sensation to distension: threshold volume. There was a significant difference between controls and those with neurogenic incontinence and dual pathology.
If the data of patients with an anatomically defective sphincter are combined with those of patients with neurogenic incontinence then there is no significant difference from controls, highlighting the clear patient definition. Patients with neurogenic incontinence, but not those with an anatomically defective sphincter without neuropathy, required a significantly greater volume to elicit a sensation of urgency than healthy controls. There was no significant difference between the three patient groups and normals in the mean maximum tolerable volume (Table II).

RECTAL SENSATION TO ELECTRICAL STIMULATION
The rectal mucosal electrical sensory threshold was also abnormal in both groups with incontinence in the presence of a neuropathy. Those with a sphincter defect alone did not have abnormal rectal sensation (Fig 4).

ANAL SENSATION TO ELECTRICAL SENSATION
The mid-anal canal sensation was abnormal in those patients with neurogenic incontinence (Table II).

TABLE II Mean (SEM) sensory thresholds to balloon and electrical mucosal stimulation

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls (n=18)</th>
<th>Neurogenic incontinence (n=30)</th>
<th>Sphincter defect (n=17)</th>
<th>Dual pathology (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectal sensory threshold to balloon distension:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold volume (ml air)</td>
<td>31.5 (3.6)</td>
<td>53.4 (6.4)*</td>
<td>34.2 (2.6)</td>
<td>47.5 (8.2)*</td>
</tr>
<tr>
<td>Urgency volume (ml air)</td>
<td>65.0 (6.4)</td>
<td>93.4 (7.8)*</td>
<td>66.4 (4.3)</td>
<td>87.0 (10.8)</td>
</tr>
<tr>
<td>Maximum tolerable volume</td>
<td>177 (16.2)</td>
<td>175 (10.4)</td>
<td>157 (11.5)</td>
<td>163 (15.7)</td>
</tr>
</tbody>
</table>

| Rectal sensory threshold to electrical mucosal stimulation: | | | | |
| Rectal sensation (mA) | 14.8 (1.4) | 24.4 (1.7) | 16.2 (1.7) | 22.9 (3.0)* |

| Anal sensory threshold to electrical mucosal stimulation: | | | | |
| Mid-anal canal (mA) | 4.2 (0.4) | 7.4 (0.5)* | 6.9 (1.4) | 9.1 (3.4) |

*Significantly different from the control value, p<0.05.

TABLE III Rectal pressures in patients with neurogenic incontinence and healthy control subjects (values mean (SEM))

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls (n=18)</th>
<th>Neurogenic incontinence (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 ml</td>
<td>7.3 (1.2)</td>
<td>7.0 (1.0)</td>
</tr>
<tr>
<td>100 ml</td>
<td>13.9 (2.3)</td>
<td>11.7 (2.6)</td>
</tr>
<tr>
<td>150 ml</td>
<td>18.4 (2.6)</td>
<td>19.3 (3.0)</td>
</tr>
<tr>
<td>200 ml</td>
<td>27.3 (4.5)</td>
<td>22.5 (3.6)</td>
</tr>
<tr>
<td>250 ml</td>
<td>32.3 (7.5)</td>
<td>30.1 (4.8)</td>
</tr>
</tbody>
</table>

TABLE IV Compliance, volumes, and pressures at different rectal sensations in healthy controls and patients with neurogenic incontinence (values mean (SEM))

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls (n=18)</th>
<th>Neurogenic incontinence (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urgency: Volume (ml)</td>
<td>113.5 (10.4)</td>
<td>142 (15.0)</td>
</tr>
<tr>
<td>Pressure (cm H2O)</td>
<td>18.7 (2.6)</td>
<td>21.8 (2.6)</td>
</tr>
<tr>
<td>dV/dP (ml/cm H2O)</td>
<td>9.9 (3.0)</td>
<td>7.0 (0.9)</td>
</tr>
<tr>
<td>Maximum tolerable volume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (ml)</td>
<td>213.0 (17.9)</td>
<td>205 (18.7)</td>
</tr>
<tr>
<td>Pressure (cm H2O)</td>
<td>41.4 (4.8)</td>
<td>37.3 (3.3)</td>
</tr>
<tr>
<td>dV/dP (ml/cm H2O)</td>
<td>7.2 (5.9)</td>
<td>5.9 (0.5)</td>
</tr>
<tr>
<td>Mean compliance from 100 ml to maximum tolerable volume (MTV):</td>
<td>6.4 (1.3)</td>
<td>4.6 (0.5)</td>
</tr>
<tr>
<td>100-MTV dV/dP (ml/cm H2O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There was no significant differences between the two groups.

TABLE V Rectal balloon volumes and pressures at initial sphincter relaxations (values mean (SEM))

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls (n=18)</th>
<th>Neurogenic incontinence (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectal volume at 1st sphincter relaxation (ml)</td>
<td>31 (9.0)</td>
<td>31.9 (6.5)</td>
</tr>
<tr>
<td>Rectal balloon pressure at 1st sphincter relaxation (cm H2O)</td>
<td>3 (1.1)</td>
<td>4.2 (1.2)</td>
</tr>
</tbody>
</table>

Figure 4: Threshold rectal electrical sensitivity. There was a significant difference between controls and those with neurogenic incontinence and dual pathology.

TABLE VI Rectal compliance and temperature

In the eight controls in whom rectal compliance was performed at two temperatures there was no

Revised on: June 16, 2022

Protected by copyright: Gut, first published as 10.1136/gut.34.2.215 on 1 February 1993. Downloaded from http://gut.bmj.com/ on June 16, 2022 by guest.
Abnormal visceral autonomic innervation in neurogenic faecal incontinence

ELECTRICAL STIMULATION INDUCED ANAL RELAXATION

The threshold for sphincter relaxation was below the threshold for conscious perception of the stimulus in all control cases.

In three patients with neurogenic incontinence and two with normal innervation but sphincter defects there was no anal sphincter response to electrical stimulation. This was not caused by failure of contact between the electrode and the rectal wall – the constant current stimulator indicates when the current is not being delivered. These five patients had low resting anal pressures which probably accounted for the lack of an observed fall in pressure.

The mean stimulus required to produce an initial relaxation was not significantly different in the groups examined (Table VI). The stimulus required for maximum relaxation was also not different from controls.

Discussion

Female patients with faecal incontinence are not a homogeneous group in terms of pathogenesis. During childbirth some patients sustain a disruption of the sphincter complex, in the absence of an obvious tear, which may not be apparent at the time of delivery. This is surprisingly common, occurring in more than 30% of primiparous deliveries. Other patients sustain nerve damage to the pudendal nerve which leads to progressive denervation and incontinence later in life. Some patients sustain both these injuries leading to a mixed picture. In those with a purely mechanical disruption but intact pelvic floor neurologic function one might expect the hind gut innervation, as assessed by sensory tests, to be normal. Indeed this study has shown that patients with a sphincter defect alone have normal rectal sensation, those with a pudendal neuropathy or mixed aetiology have impaired sensation, and that this difference is obscured if these groups are not correctly identified and separated.

Abnormal balloon distension thresholds in patients with incontinence have been described in several reports but other groups have found no difference. It seems likely that these latter studies have combined groups of patients with different pathophysiological causes for incontinence. In the incontinent group described by Wald and Tunuguntla, 10 of the 31 had incontinence associated with anorectal surgery or disease, two had childhood enuresis, and one had an ileal resection. Likewise Rasmussen et al. combined 15 patients with idiopathic faecal incontinence and 16 patients with incontinence of traumatic origin. In the study by Penninckx et al only four of the patients had evidence of pudendal neuropathy. Ferguson et al selected patients with neurogenic incontinence only but one third of their control group were men; as a result the mean balloon distension sensory threshold was approximately 50 ml, which is considerably higher than that in most reports using the same technique.

Our studies show a disturbance of visceral sensation to both balloon distension and electrical mucosal stimulation in patients with neurogenic incontinence. Women with incontinence because of a sphincter tear but normal innervation had reduced anal pressures but normal visceral sensation.

Our control group was younger than that with neurogenic faecal incontinence alone (Table 1). However the patients with a sphincter disruption without neuropathy also acted as a separate disease control group, and there was no significant difference in age between this group and that with a neuropathy alone. Furthermore, Allen et al found no change in the threshold for balloon distension with age. We therefore feel that the observed abnormality of rectal sensation in these patients is a true finding. Similarly, the observed normal compliance in our incontinent patients is likely to be a true finding, as previous studies have shown either no change or a decrease in compliance with age.

A raised threshold for electrical stimulation in patients with neurogenic incontinence indicates a true sensory abnormality rather than a larger rectum in these subjects. This test is not affected by variations in rectal capacity or rectal wall compliance. Electrosensitivity is likely to be mediated via different receptors and pathway than the sensation induced by distension. The rectal mucosa is known to be innervated by non-myelinated nerve fibres which are probably

Table VI. Electrical rectal stimuli required to produce initial and maximum relaxation of the internal anal sphincter.

<table>
<thead>
<tr>
<th></th>
<th>Healthy control (n=18)</th>
<th>Neuroathy (n=15)</th>
<th>EAS defect (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold (mA) for relaxation</td>
<td>11·5 (1·0)</td>
<td>12·9 (0·9)</td>
<td>10 (1·3)</td>
</tr>
<tr>
<td>Stimulus for maximum relaxation</td>
<td>23·5 (1·4)</td>
<td>23·9 (1·5)</td>
<td>20 (2·1)</td>
</tr>
</tbody>
</table>

There were no significant differences between the groups. EAS = external anal sphincter.
excited by electrical, 13 thermal14 and mechanical stimulation. The perception of rectal distension probably depends on receptors in the rectal wall15 or even the configuration of the intrinsic nerve plexuses, and may also involve receptors in the mesentery or in the pelvic floor.16 Parasympathetic17 18 and sympathetic nerves may be involved in conveying afferent rectal sensory fibres from the rectum.

Our finding of normal rectal compliance in patients with faecal incontinence confirms that of others19,20,21 and suggests that the passive viscoelastic properties of the rectal wall are normal in this condition. However, the wide variation in compliance in controls and patients22,20 makes it unlikely that this technique would reliably detect changes in the rectal wall unless the differences are considerable.

The low rectal pressures and volumes required to produce inhibition of the sphincter suggest that the rectoanal inhibitory reflex may not depend solely on volume or pressure receptors. Indeed, the rectoanal reflex can be produced by electrical or thermal stimulation without rectal distension probably via receptors within the mucosa. Recent work from our laboratory suggests that sphincter relaxation occurs early during defaecation before peristalsis reaches the rectum,23 and that this sphincter relaxation is likely to be mediated via intrinsic intracolonic and intrarectal nerves.24

The normal response of the internal anal sphincter to two distinct types of rectal stimulation, that is rectal electrical stimulation and distension, in patients with incontinence suggests that the intrinsic innervation is normal. In contrast, using balloon distension as a stimulus, Read \textit{et al} found that the volume required to produce the rectoanal inhibitory reflex by balloon distension was lower in incontinent subjects.25 However, in a separate study26 the same group found that 10% of patients with idiopathic faecal incontinence had abnormal rectal sensation together with normal distension volumes required to elicited anal relaxation – a finding similar to our own. The fact that a number of patients with low resting pressures had no response to electrical stimulation suggests that these patients either had a more severe abnormality affecting the internal anal sphincter or that for some reason they have an abnormality of their intrinsic innervation. Sun \textit{et al} also described a subgroup of incontinent patients with noticeably abnormal function of the internal anal sphincter in whom there was no detectable relaxation in response to rectal distension.27

In summary, the passive viscoelastic properties of the rectal wall are normal in neurogenic incontinence. Our findings of altered sensation to distension and electrical stimulation therefore suggest a probable primary visceral neurological deficit. The intrinsic innervation of the internal anal sphincter, as assessed by the response to rectal distension and electrical stimulation, is normal. We therefore feel that the abnormality in hindgut visceral neurological function is more likely to involve the extrinsic nerve supply, than the intrinsic nerves.

In neurogenic faecal incontinence, extrinsic denervation affects more than just the sphincter mechanism – afferent pathways from the rectum, at least, also seem to be affected.

C. T. M. Speakman is supported by the Sir Alan Parks Research Foundation, The Royal College of Surgeons and M.A. Kamby by the Sir Mark’s Research Foundation.

10 Sun WM, Read NW, Donnelly TC. Impaired internal anal sphincter in a subgroup of patients with idiopathic faecal incontinence. \textit{Gastroenterology} 1989; 170: 130-5.
27 Iher T. Studies on anal function in continent and incontinent patients. \textit{Scand J Gastroenterol} 1974; 9 (suppl 25).
Abnormal visceral autonomic innervation in neurogenic faecal incontinence

