
8 Guerin CR, Cummins JH, Macfarlane GT. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Envi-


10 Oremland RS, Taylor BF. Sulfate reduction and sulfate-reducing bacteria in marine sediments. Rhodo-

11 Krumholz SA, Schriemer P, Thauer RK. Differ-
ent K, values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an expla-
nation for the apparent inhibition of meth-

12 Thauer RK, Jungemann K, Decker K. Energy conservation in chemotrophic anaerobic bac-


16 Florin THJ. Hydrogen sulphide and total acid-
volatile sulphide in faeces, determined with a specific spectrophotometric method. Clin Chem
1991; 37: 927-34.

17 Strochi A, Levitt MD. Factors affecting hydro-


19 Miller TL, Woiner MJ. Enumeration of Meth-


21 Biagini G. Differences in intestinal contents after ileal resection and in other malabsorption syndromes. Lancet 1968; i: 643-5.

22 Percy Robb FW, Jalan KN, McManus JP, Sircus W. Effect of ileal resection on bile salt metabol-
ism in patients with ileostomy following proc-

23 Meuthen KP, Spengler U, Hoffmann AF. Colonic absorption of unconjugated bile acids. Perfu-


Thyroid function and interferon treatment in chronic hepatitis C

EDITOR.—We read with much interest the article by Marcellin et al (Gut 1992; 33: 855-6) about two cases of sustained hypothyroidism induced by recombinant α interferon in patients with chronic hepatitis C. The presence of antithyroid antibodies in both patients suggested an autoimmune cause of the hypo-
thyroidism.1

We have recently seen a 51 year old woman with chronic active hepatitis C proved on biopsy examination randomised to receive 3 MU of recombinant interferon α2-b (INTRON-A, Schering-Plough Corporation) subcutaneously three times a week for six months. The patient had no history of thyroid disease and had not received any drug known to be toxic to the thyroid. Serum triodo-
ythronine, free triiodothyronine, free thyroxine, and thyroxine binding globulin were determined by RIA kits (Farmos Diagnostica Ltd, Turku, Finland); serum thyroid stimulating hormone, thyroid microsomal antigen autoantibodies, and thyroglobulin autoantibodies were measured by IRMA kits (Biocode, Switzerland). Serum samples were collected before treatment and every month for 12 months thereafter.

A transient reduction in triiodothyronine, thyroxine free thyroxine values started at month 4 and an increase in thyroid stimulating hormone values was recorded (Figure). The patient had no clinical signs of hypothyroid-

ism; thyroid autoantibodies remained nega-
tive. On this basis, we suggest a multifactorial cause of thyroid function change induced by recombinant α interferon. In our case, a direct inhibition of thyroid hormone synthesis and secretion, or both by recombinant α interferon could have played a determinant role. This mechanism has been shown in vitro experiments with γ interferon.2

P A PICCIOTTO G VARAGONA P CIANCOSI R FRANCESCHINI A GARIBALDI G CELLE

Department of Internal Medicine, University of Genoa, Genoa, Italy


2 Fentiman IS, Thomas BS, Balkwill FR, Rubens RD, Hayward JL. Primary hypothyroidism asso-


Reply

EDITOR.—We read with interest the comment by Picciotto et al on our paper reporting another case of hypothyroidism, probably induced by recombinant interferon α2-b in a patient treated with α interferon. No antithyroid antibodies were found and the authors suggest a multifactorial mechanism by which thyroid abnormalities are induced.

We agree that, in the absence of antithyroid antibodies, the role of a direct inhibition of thyroid hormone synthesis and secretion by α interferon, or both, might be considered. Indeed, among 22 patients developing thyroid abnormalities while receiving interferon, we found antithyroid antibodies (anti-
thyroglobulin and anti-thyroperoxidase) in only half of them (unpublished data). Ex vivo studies of patients’ thyroid cells, if considered ethical, might provide pertinent information about the mechanisms of the cell damage induced by interferon in these patients.

P MARCELLIN M POUTEAU N COLAS LINHART B BOK J P F BENHAMOU

Services d’Hépatoologie, de Médecine Nucléaire et de Biophysique et Consultation de Médecine, Hôpital Beaumont, Châlons, France

Biliary endoprosthesi and common bile duct stones

EDITOR.—The report from Peters et al (Gut 1992; 33: 1412-5) of a group of patients with bile duct stent stents with a biliary endopros-
thesis is of considerable interest. This technique has been used by many centres, provides excellent immediate drainage, and reasonable medium term results—but I wish to sound a note of caution. The justification for using stents as permanent treatment must depend on the results in the long term, indeed can only be assessed by lifetime follow up which no one has yet reported. Our own series with a follow up of 2-5 years was encouraging,1 but more than half of the patients were still alive (despite being apparently at very high risk initially),2 and many problems may have occurred subsequently.

The number of patients having stenting for bile duct stones in the King’s series seems very high—no fewer than 40 of 146 of a consecutive series, including 27 (18%) as projected perma-
nent treatment. The authors suggest that their low rate of duct clearance reflected their referral practice but referral centres should have special expertise. Of 343 patients with duct stones referred to this unit during the last two years, the clearance rate using standard techniques and mechanical lithotripsy was 94%. Sints were used as ‘permanent’ treat-
m

Figure: Triiodothyronine, thyroxine, free thyroxine, and thyroid stimulating hormone behaviour in a patient with chronic hepatitis C treated with 3 MU of IFN α2-b for six months.