LETTERS TO THE EDITOR

Oral submucous fibrosis—a chronic disseminated intravascular coagulation syndrome with local coagulopathy

EDITOR,—We have read the leading article in Gut with great interest. (Gut 1992; 33: 4–6).

We were, however, disappointed as the work on oral submucous fibrosis published in Indian journals1 and the American Journal of Clinical Pathology2 has not been covered by the authors. After working for about 15 years on oral submucous fibrosis, we cannot agree with the views expressed by them.

According to Jayanthi et al, oral submucous fibrosis has been attributed to local irritation caused by tobacco and chillies used in cooking and that the progression of the disease can be halted by stopping tobacco, pan, etc but it does not seem to be that simple or straightforward.

We have seen young female patients who were not exposed to such irritants and they still developed the disease.

We have seen that oral submucous fibrosis is a chronic disseminated intravascular coagulation syndrome but it is well compensated for in most patients. We have shown that there is a thrombin-like substance produced in the saliva of patients suffering from oral submucous fibrosis. This is in contrast with the findings in normal saliva.

In normal saliva fibrinolytic substances have been shown, however, to have found considerable amounts of proactivator and plaminogen in mixed, parotid, and submaxillary sublingual saliva. Several centres in India have confirmed the presence of fibrin producing factor in oral submucous fibrosis (personal communication).

In 1984, using a haemagglutination inhibition technique (Wellcome Kiti HA:14) we showed that fibrinogen/fibrin degradation products—which we prefer to call molecules immuno-similar to fibrinogen (MISFI)—were detected both in the plasma and sera of the patients with oral submucous fibrosis. These MISFI were like fibrin monomers, because paracoagulation tests were positive and cryoprecipitate was produced.

In addition to the discovery of MISFI we have done global or first line clotting time tests in oral submucous fibrosis (unpublished data).

These screening tests—activated partial thromboplastin time, thrombin time, and thrombin—yield interesting information. The clotting times of oral submucous fibrosis are either prolonged or normal or even shortened.

When working on oral submucous fibrosis plasma, it is important to appreciate that there is a strong tendency for the formation of cryofibrinogen so that tests should be performed on fresh plasma and sera. When the plasma is stored at −20°C, cryofibrinogen can develop in a matter of two to six hours.

We find cryofibrinogen in almost all patients with oral submucous fibrosis. The presence of cryofibrinogen suggests that a small quantity of thrombin-like material is being added to the circulating plasma. Our data suggest that this thrombin like procoagulant is present in the saliva of patients with oral submucous fibrosis.

Furthermore, we are tempted to suggest that the varying clotting times, the presence of MISFI (or fibrinogen/fibrin degradation products) and cryofibrinogen should point to hypercoagulation. According to Wintrobe1 hypercoagulation and chronic disseminated intravascular coagulation are superficially different but basically the same phenomena and disseminated intravascular coagulation is virtually always associated with fibrinolysis.

Oral submucous fibrosis seems to have a genetic basis. It is suggested that in oral submucous fibrosis the local fibrinolytic mechanism in the oral cavity is defective and cannot match or matches imperfectly with the hypercoagulation produced by the fibrin producing factor.

A G PHATAK
Sharada Research Institute,
MIRA-410 (Dist Sangli),
Maharashtra, India


Concentrations of 5-ASA and AC-5-ASA in human ileocolonic biopsy homogenates

EDITOR,—I read with interest the paper by (Gut 1992; 33: 1338–42) Vos et al. This is a new approach to the study 5-ASA compounds in humans but further studies are necessary to correlate these concentrations with clinical benefit in inflammatory bowel diseases.

Firstly, I would like to comment about the experimental protocol. In their study, Vos et al showed in the falciparum malaria patients that oral salicylate incidence in mild malaria and to obtain similar conditions to those found in ulcerative colitis. It has been shorted previously, however, by Rao et al from Sheffield that total colonic transit time is not decreased in patients with acute ulcerative colitis. Segmental distribution of markers assessed by an abdominal x ray done 48 hours after the ingestion of radiopaque markers showed that patients with acute ulcerative colitis had proximal colonic stasis whereas rectosigmoid transit in a clinical study. It is possible that the ingestion of laxatives three days before the study will decrease the time for the colonic bacteria to split the azo bond of Dipentum and Salazopyrin. The very low mucosal concentrations of these drugs seen in this study, could be partly because of the decreased colonic transit time.

Secondly, there is only some information in this paper about the effect of the various 5-ASA compounds on mucosal concentrations of the 5-ASA and AC-5-ASA in human rectal biopsy homogenates after ingestion of Salazopyrin, Dipentum, and Claversal 250. The data presented in Table V show that colonic lavage is accompanied with an important decrease of 5-ASA concentration for Dipentum and Asacol 250 but not for Salazopyrin and we have no information for Asacol 500 and Claversal, which gave the highest concentration. Therefore, we believe that in vivo dialysis of faeces is perhaps a more physiological way to measure concentrations of 5-ASA and AC-5-ASA after oral 5-ASA preparations as proposed Lauritzen et al.

Thirdly, in their study, Vos et al measure the concentration of 5-ASA in human ileocolonic biopsy homogenates that are considered the active drug of all these compounds. This is true for coated 5-ASA compounds and Dipentum, but not for Salazopyrin, which is not only a produg but also has direct effect on the inflammatory process seen in ulcerative colitis. Therefore the colonic mucosal concentration of 5-ASA is not sufficient to assess the activity of this drug in inflammatory bowel disease.

S CHAUSSADE
P Sogni
Service de Gastroentérologie Hopital Cochin,
27 rue de Furstenberg, 75674, Paris, France

Concentrations of 5-ASA and AC-5-ASA in human ileocolonic biopsy homogenates

EDITOR,—I read with interest the paper by Vos et al. (Gut 1992; 33: 1338–42) This is a new approach to the study 5-ASA compounds in humans but further studies are necessary to correlate these concentrations with clinical benefit in inflammatory bowel diseases.

Firstly, I would like to comment about the experimental protocol. In their study, Vos et al showed in the falciparum malaria patients that oral salicylate incidence in mild malaria and to obtain similar conditions to those found in ulcerative colitis. It has been shorted previously, however, by Rao et al from Sheffield that total colonic transit time is not decreased in patients with acute ulcerative colitis. Segmental distribution of markers assessed by an abdominal x ray done 48 hours after the ingestion of radiopaque markers showed that patients with acute ulcerative colitis had proximal colonic stasis whereas rectosigmoid transit in a clinical study. It is possible that the ingestion of laxatives three days before the study will decrease the time for the colonic bacteria to split the azo bond of Dipentum and Salazopyrin. The very low mucosal concentrations of these drugs seen in this study, could be partly because of the decreased colonic transit time.

Secondly, there is only some information in this paper about the effect of the various 5-ASA compounds on mucosal concentrations of the 5-ASA and AC-5-ASA in human rectal biopsy homogenates after ingestion of Salazopyrin, Dipentum, and Claversal 250. The data presented in Table V show that colonic lavage is accompanied with an important decrease of 5-ASA concentration for Dipentum and Asacol 250 but not for Salazopyrin and we have no information for Asacol 500 and Claversal, which gave the highest concentration. Therefore, we believe that in vivo dialysis of faeces is perhaps a more physiological way to measure concentrations of 5-ASA and AC-5-ASA after oral 5-ASA preparations as proposed Lauritzen et al.

Thirdly, in their study, Vos et al measure the concentration of 5-ASA in human ileocolonic biopsy homogenates that are considered the active drug of all these compounds. This is true for coated 5-ASA compounds and Dipentum, but not for Salazopyrin, which is not only a produg but also has direct effect on the inflammatory process seen in ulcerative colitis. Therefore the colonic mucosal concentration of 5-ASA is not sufficient to assess the activity of this drug in inflammatory bowel disease.

V JAYANTHI
Department of Digestive Health and Disease,
Kilpauk Medical College,
Madras, India

J F MAYBERRY
Leicester General Hospital, Leicester


Reply

EDITOR,—We agree with Chausade and Sogni that the influence of the washout on our results remains a difficult problem. We emphasise that we used the washout only to facilitate the endoscopy and not to mimic a condition similar to diarrheal colitis.

We agree that because of the mechanical removal of the intraluminal contents, an impairment in the splitting of the azo bond can be expected for Dipentum and Salazopyrin. The comparison of mucosal concentrations with and without lavage, however, can exclude this effect as the sole explanation for the very low concentrations after Salazopyrin. The influence on Dipentum seems more important. This suggests that in a clinical setting, diarrheal mainly changes the results expected after treatment with Dipentum and to a lesser extent of Salazopyrin and the release modified drugs. We did not study the influence of the washout on the mucosal concentrations after Asacol and Claversal 500 because we did not expect...