In vivo rectal inflammatory mediator changes with radiotherapy to the pelvis

A T Cole, K Slater, M Sokal, C J Hawkey

Abstract
In vivo changes in the rectal values of eicosanoid inflammatory mediators induced by pelvic radiotherapy were measured to study the pathophysiology of the early radiation bowel reaction. Ten patients having pelvic radiotherapy, aged 57 to 78, had rectal dialysis.

Values of the eicosanoids leukotriene B₄ (LTB₄), thromboxane B₂ (TXB₂), and prostaglandin E₂ (PGE₂) were measured before radiotherapy, at the end of radiotherapy, and at least four weeks after radiotherapy. Values of LTB₄ rose with radiotherapy from 0.21 ng·ml⁻¹ (median) to 1.14 ng·ml⁻¹ (p=0.012); PGE₂ rose from 0.60 ng·ml⁻¹ to 1.58 ng·ml⁻¹ (p=0.038), and TXB₂ rose from 0.365 ng·ml⁻¹ to 1.6 ng·ml⁻¹ (p=0.005). The rise in eicosanoid inflammatory mediators may have an important role in the pathophysiology of the early radiation bowel reaction.

(Gut 1993; 34: 1210-1214)

The early radiation bowel reaction occurs in radiotherapy to the pelvis in up to 75% of patients treated. This normal tissue injury is a limiting factor for radiotherapy dose. The early reaction is associated with symptoms of diarrhoea and nausea and histologically is characterised by an inflammatory cell infiltrate, oedema, ulceration, epithelial cell loss, congestion, and nuclear damage.

The cellular mechanisms underlying this reaction are not clearly understood; they probably entail the triggering of inflammatory reactions by the release of reactive species generated by ionising radiation. Eicosanoid inflammatory mediators include the oxidative products of arachidonic acid prostaglandin E₂ (PGE₂), thromboxane A₂ (TXA₂), and leukotriene B₄ (LTB₄). Eicosanoid mediators of inflammation are raised in animal models of radiation injury to the gut.

We have investigated the mechanism of the early radiation bowel reaction in vivo in humans by measuring changes in rectal dialysate values of PGE₂, LTB₄, and TXB₂ (the stable product of TXA₂).

Methods
DESIGN AND AIMS
The study was an open prospective study to investigate the in vivo effect of pelvic radiotherapy on rectal values of the eicosanoid inflammatory mediators PGE₂, TXB₂, and LTB₄ measured in rectal dialysates.

PATIENTS
Ten patients, nine men, one woman were studied; all were receiving radical pelvic irradiation for bladder or prostatic cancer. The study was approved by the Nottingham University Hospital Ethics Committee. Patients gave written informed consent. One other patient withdrew from the trial because of development of a painful rectum during radiotherapy. The study was conducted in a subregional radiotherapy centre and an academic department of gastroenterology and therapeutics.

Radiotherapy
Radiotherapy was given as clinically indicated using either a 6 MV or 8 MV linear accelerator. The dose to the rectum was calculated from the planning computed tomography. The maximum and minimum radiation dose to the rectum was calculated in the plane of the planning slice for each patient. The dialysis technique sampled this area. Radiotherapy for cancer of the bladder was typically given in two phases; phase I tumour dose of 40 Gray in 20 daily fractions over four weeks and phase II 20 Gray in 10 daily fractions over two weeks, the different phases being distinguished by the fields used but always irradiating a similar volume of the rectum. Radiotherapy for cancer of the prostate was also in two phases but with a 25 Gray phase two, in 15 fractions.

Clinical Scoring of Abdominal Symptoms
A clinical score was derived at the time of each dialysis by adding scores for: abdominal pain (none=0, mild=1, moderate=2, severe=3); the stool frequency (1 or less per day=0, 2 to 3=1, 4 to 5=2, 6 to 9=3, 10 or more=4); the visible presence of blood in the stool (none=0, a trace=1, more than a trace=2); and the stool consistency (normal=0, semiformed=1, liquid=2). All medicines taken by patients were recorded.

Rectal Dialysis
Patients had rectal dialysis at baseline and then at the end of the course of radiotherapy. Six patients had a third dialysis at least a further four weeks. Rectal dialysis bags were made from ¾ inch Visking Tubing (Medicell) with a molecular weight cut off of 12 000–14 000 filled with Rheomacrodex (Pharmacia) as previously described. Patients evacuated their bowels before rectal dialysis. Dialysis bags were inserted per rectum for two hours and then removed. A two hour dialysis time does not achieve equilibrium values of the eicosanoid measured but reflects epithelial values and has been used by other authors. We did not discard stained dialysates. The treatment time was chosen...
In vivo mediator changes with liquid chromatography performance were stored at spiked dialysate early subject. Unextracted patients were assayed by radioimmunoassay. The assays were validated against high performance liquid chromatography (HPLC) for the LTB₄ assay and against gas chromatography and mass spectrometry (GCMS) for the TXB₂ and PGE₂ assay.

LTB₄
Samples were extracted for LTB₄ assay. One ml of rectal dialysate sample was mixed with 1 ml of HPLC grade methanol (Fisons). This precipitated out the dextran which was spun down at 3500 rpm at 4°C for 10 minutes. Samples of each supernatant (1·67 ml) were taken and acidified to pH 4 with 0·5% trifluoroacetic acid (Sigma) using an autotitrator (Radiometer, Copenhagen). Fifty µl of ³H LTB₄ (approximately 1000 cpm, Amersham International) was added as a recovery standard and the sample further diluted with 2 ml of water at pH 3·5. Each sample was loaded onto a C₈ reverse phase silica cartridge with metal frits (Bond-Elute, Anachem) previously prepared with washes of methanol and water at pH 3·5; washed with 1 ml each of HPLC grade water, 10% ethanol and hexane, and finally eluted with 1 ml of methanol. Extracted samples were stored in sealed polypropylene tubes at −20°C and subsequently assayed with a commercial radioimmunoassay (Amersham International). The assay has a cross reactivity for 20-OH LTB₄ of 3·9%, with lower cross reactivity to other eicosanoids. Samples were measured in comparison with extracted standards prepared in duplicate.

PGE₂ AND TXB₂
PGE₂ and TXB₂ were assayed in diluted unextracted dialysates by radioimmunoassay as previously described. The PGE₂ antibody (Sigma) has a cross reactivity of 51% to PGE₁ but not to other eicosanoids. TXB₂ antibody was obtained from Levine. The antibody has a cross reactivity of <1% to PGE₂ and other eicosanoids.

VALIDATION OF RADIOIMMUNOASSAYS
Healthy volunteer dialysate spiked with 1–5 ng.ml⁻¹ LTB₄ was assayed by both HPLC and radioimmunoassay. Results correlated well (r=0·92, p=0·015) (Fig 1). Dialysates from patients with ulcerative colitis were assayed both by GCMS and by radioimmunoassays. For PGE₂ (Fig 2) and TXB₂ (Fig 3), there was a good correlation for both radioimmunoassays: PGE₂ (r=0·944, p=0·001) and TXB₂ (r=0·736, p=0·037). In spiking experiments 10 ng.ml⁻¹ of LTB₄, PGE₂, and TXB₂ were added to n=6 samples. Separate unspiked aliquots of the same dialysate were also assayed. The measured differences were not significantly different from the known addition: LTB₄ 88% recovery (confidence intervals, 73–103%); TXB₂ 108% recovery (82–134%); PGE₂ recovery 112% (91–113%).
TABLE Details of patients

<table>
<thead>
<tr>
<th>Age</th>
<th>Diagnostic group</th>
<th>Radiotherapy Max</th>
<th>Min</th>
<th>Clinical score Before</th>
<th>After</th>
<th>Opiate and anti-diarrhoeal medicines Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>B</td>
<td>32-2</td>
<td>19-8</td>
<td>0</td>
<td>0</td>
<td>Loperamide</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>B</td>
<td>46-8</td>
<td>31-2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>P</td>
<td>64-3</td>
<td>50-3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>B</td>
<td>50-5</td>
<td>18-0</td>
<td>1</td>
<td>5</td>
<td>Codeine</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>B</td>
<td>60-4</td>
<td>21-8</td>
<td>2</td>
<td>2</td>
<td>Coproxamol</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>B</td>
<td>59-8</td>
<td>23-0</td>
<td>0</td>
<td>1</td>
<td>Dihydrocodeine</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>B</td>
<td>51-6</td>
<td>32-0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>B</td>
<td>60-0</td>
<td>21-4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>B</td>
<td>45-2</td>
<td>24-4</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>B</td>
<td>61-2</td>
<td>36-2</td>
<td>0</td>
<td>4</td>
<td>Coproxamol</td>
<td></td>
</tr>
</tbody>
</table>

B=bladder cancer, P=prostate cancer. Radiotherapy=calculated total dose in planning slice in Gy (max=maximum dose, min=minimum dose). Before=baseline before treatment; After=at end of radiation treatment.

SENSITIVITY
Sensitivity was assessed as the threshold detection at 90% B/ Bo for the individual radioimmunoassays. The LTB4 assay threshold was 0.2 ng.ml⁻¹ dialysate at the strongest dilution used for assay (1 in 4). The TXB2 assay threshold was 0.1 ng.ml⁻¹, and the PGE2 assay threshold was 0.6 ng.ml⁻¹.

REPRODUCIBILITY OF ASSAYS
Paired specimens were measured in the same assay. The intra assay variability of LTB4 at 2.46 ng.ml⁻¹ showed a standard deviation of 0.5 ng.ml⁻¹, coefficient of variation 20.13%. PGE2 assay showed an intra assay variability at 8.8 ng.ml⁻¹ of standard deviation 0.92 ng.ml⁻¹, coefficient of variation 11.5%. TXB2 assay had an intra assay variability at mean 6.55 ng.ml⁻¹ of 0.26 ng.ml⁻¹ standard deviation, coefficient of variation 4.01%.

FAECAL COLORATION OF DIALYSES
Coloration of the dialysates was assessed as light absorbency at 488 nm measured by spectrophotometry (Pye Unicam) (stained dialysates typically have a broad peak at this frequency).

STATISTICAL ANALYSIS
The Wilcoxon signed rank test for matched pairs was used for statistical analysis.

Results

RADIATION DOSE TO THE RECTUM
The Table shows the dose ranges for the individual patients. The minimum dose given to the rectum in the plane of the radiotherapy planning slice ranged from 18 to 50.5 Gy and the maximum dose ranged from 32.2 to 64.5 Gy.

CHANGES IN CLINICAL SCORES AND DRUG USAGE
The Table shows the drugs given and clinical scoring. Six of the patients used an opiate or an anti-diarrhoeal preparation during the radiotherapy. Clinical scoring rose by L (median, 0 to 4) points. There tended to be a correlation between the clinical score at the end of radiotherapy and the values of PGE2 (r=0.49, p=0.076 Spearman), TXB2 (r=0.47, p=0.085), and LTB4 (r=0.37, p=0.15).

CHANGES IN DIALYSATE COLORATION
The colour of the dialysate was not significantly different between the three dialysis periods changing from an absorbency of 0.56 (median, range 0.2 to 4.56) at baseline to 1.1 (0.36 to 7.52), difference p=0.37 Wilcoxon) after radiotherapy and to 1.09 (0.08 to 5.06, difference from post radiotherapy dialysis p=0.12) four weeks after radiotherapy.

CHANGES IN INFLAMMATORY MEDIATORS AFTER RADIOTherapy
Radiotherapy caused rectal eicosanoid value to rise. The finish of radiotherapy caused values to fall back towards baseline after four weeks. Figure 4 shows the results for LTB4. There is a consistent and significant rise in the LTB4 from 0.21 (median, range 0.20 to 0.64) before radiotherapy to 1.14 (0.20 to 4.0) after radiotherapy (median rise 0.89 ng.ml⁻¹, p=0.012). In those subjects studied again at four to eight weeks after radiotherapy LTB4 values fell by 1 ng.ml⁻¹ (0 to -1.6, p=0.028).

TXB2 rose after radiotherapy from 0.36 ng.ml⁻¹ (0.10 to 0.88) before radiotherapy to 1.6 (0.26 to 3.28, (median rise 1.25 ng.ml⁻¹ (p=0.005)) and then fell four weeks after radiotherapy stopped by 1.33 ng.ml⁻¹ (+0.05 to -3.01, p=0.028) (Fig 5). PGE2 rose after radiotherapy from 0.6 ng.ml⁻¹ (0.60 to 2.4) to 1.58

Figure 4: Effect of radiotherapy on values of LTB₄ in rectal dialysis.
In vivo rectal inflammatory mediator changes with radiotherapy to the pelvis

5: Effect of radiotherapy

Figure 5: Effect of radiotherapy on values of PGE₂ in rectal dialysis.

Discussion

We have shown that rectal dialysate values of LT₄, TXB₂, and PGE₂ rise after pelvic radiotherapy. These mediators are probably responsible for pathological changes because it is known that these mediators can induce an inflammatory response by changing capillary permeability, inducing inflammatory cell infiltration, and activating the inflammatory cells. Leukotriene B₄ causes neutrophil chemotaxis, adherence, aggregation, degranulation, and an oxidative burst. Thromboxane causes adherence of neutrophils and vasoconstriction. Prostaglandin E₂ promotes oedema formation and chloride secretion (however, it also has some anti-inflammatory action such as inhibiting neutrophil degranulation). The changes in mediators tended to correlate with the clinical score. This also supports the proposed pathogenetical role. We did not look at the histological correlate of the inflammatory mediators as for ethical reasons we did not perform sigmoidoscopy and rectal biopsy.

The mechanism of induction of eicosanoids may be either primary or secondary. A trigger for leukotriene synthesis may be the formation by ionising radiation of lipid peroxides, which may in turn promote synthesis of leukotrienes by LTA₄ hydrolyase. Evidence supportive of this mechanism is that vitamin E, a fat soluble free radical scavenger, reduces the formation of fluid in a rat model of radiation enteritis.

Other biological effects of radiation may also be important. Radiation induces nuclear regulating proteins, these are able to regulate cytokines, which may themselves have secondary effects on eicosanoids. Radiation damage to the epithelium will lead to a breakdown of the mucosal barrier to chemotactants such as FMLP, bacteria, and toxins, resulting in a secondary inflammatory response. Radiation may induce diarrhoea by a non-inflammatory mechanism such as bile acid malabsorption (although only as a feature of late radiation damage to the small bowel).

Although we did not study any patients with severe symptoms, our findings seem to be clinically relevant. Clinical scores rose in 6/10 patients, anti-diarrhoeal drugs were used in 3/10, and opiate containing preparation in a further three. The changes in eicosanoids reflected the clinical symptoms; and we would expect this to be greater in severely symptomatic patients. We do not know whether our findings of early changes in rectal dialysate eicosanoid values relate to the risk of late complications.

In pelvic radiotherapy the early rise in rectal leukotrienes, thromboxane, and prostaglandins has a potential treatment implication as inhibitors are available. Aspirin will inhibit both thromboxane and prostaglandin synthesis; it has been shown to ameliorate the early radiation bowel reaction. Steroids inhibit the synthesis of all the eicosanoids; they reduce late radiation induced fibrosis in experimental models. Prostaglandins, however, may be radioprotective. Therefore, selective inhibitors that inhibit leukotrienes and thromboxanes but not prostaglandins may be of value. Drugs such as 5-lipoxygenase inhibitors and TXB₂ synthase inhibitors
inhibitors and receptor antagonists are becoming available. Specific prophylactic inhibition of eicosanoid inflammatory mediators should be investigated as a way to limit normal tissue injury to the rectum during pelvic radiotherapy.

The authors would like to acknowledge the help of Dr S Barrow for assistance in validation with GCMS and Dr N Enthistle (Fisons) for assistance in HPLC validation. Parts of these data have been published in abstract form previously (Gut 1991; 32: A1205) and in: Nigam S, Houck KV, Marnett LJ, Walden Jr TL. Eicosanoids and other bioactive lipids in cancer inflammation and radiation injury. Boston: Kluwer Academic, 1992.

9 Powell WS. Rapid extraction of oxygenated metabolites of arachidonic acid from biological samples using octadecylsilil silica. Prostaglandines 1980; 20: 947-57.