simply pass through it as suggested previously. Concerning M. paratuberculosis, however, the conflicting results were reported by Elsaghib et al. They showed significantly increased antibody concentrations to M. paratuberculosis specific protein in Crohn’s disease patients. This difference might result from the antigens used for their experiments. Stainsby et al used antigens that were filtered sonicate preparations of the mycobacterial species, and as they discussed in their article, the study of humoral immunity to M. paratuberculosis in Crohn’s disease should be devoid of the cross reactive nature of mycobacterial antigens. Furthermore, Sanderson et al reported that M. paratuberculosis DNA was identified in Crohn’s disease, in one of 23 (4.3%) ulcerative colitis, and in five of 40 (12.5%) control tissues by PCR. We agree with Sanderson et al that this high explained by secondary invasion of a previously damaged mucosa. Therefore, some kinds of mycobacteria may be ubiquitously distributed in the human intestine, but M. paratuberculosis might participate in the pathogenesis of Crohn’s disease.

Helicobacter pylori infection

EDITOR,—The EUROWGAST Study 1 provided impressive confirmation of the geographical association between Helicobacter pylori infection and gastric carcinoma. 2

The technique was serological, however, and we considered the geographical and ethnically disparate populations, so subgroup analysis for risk factors in H. pylori infection may not be appropriate. It is possible that serology does not always correlate well with active infection in apparently healthy subjects, and may merely provide a historical record. 3

The 17 groups studied had between 132 and 921 subjects each, who presumably would have been from a variety of racial groups in the 13 different countries: these factors are well known to affect prevalence. The absence of a sex effect, and the increased frequency of infection at age 55-64 years compared with 25-34 years, harmonises well with the conclusions in other studies, and are easy to prove. But whether the technique is suitable to make statements about smoking and alcohol use is much more doubtful. We used a reliable direct urease test (CLO test) for assessment of active H. pylori infection in local British white patients to assess the effect of personal habits. 4 For the current cigarette smokers there was a clearly increased prevalence of H. pylori infection (49.6% vs 35.5% in non-smokers or those who had given up smoking at least a year before, p<0.01). This was consistent with the known suppressive effects of smoking on immune defences; and also the association between peptic ulcer and smoking, as duodenum is a very strong ulcerogenic factor associated with H. pylori. Ours is the only study directly focused on this problem in a large homogeneous well defined population using an effective direct method for active H. pylori infection.

I would like to persuade colleagues that this is indeed the correct answer and challenge doubters to compare their specific methodological basis to this problem.

M C BATSON
Bishop Auckland General Hospital, Bishop Auckland, County Durham DL14 6AD


Reply

EDITOR,—One aim of the EUROMAG study was to identify risk factors for H. pylori seropositivity, using a common protocol to collect blood samples and epidemiological data from random samples of the general population in a wide range of different countries. Bateson criticises one conclusion from the study: that H. pylori infection, as assessed by serology, is not associated with smoking. He states that serology may be a poor indicator of current H. pylori infection and that the use of different populations, with different prevalence rates, precludes general conclusions concerning risk factors for H. pylori infection.

The lack of association between H. pylori and smoking was seen in the whole EUROMAG population and not in a subgroup analysis as indicated by Bateson. Furthermore, in none of the 17 individual centres was there a statistically significant association between smoking and H. pylori seropositivity. The estimated odds ratio for smokers v non-smokers was 1·0 or higher in 10 study centres and was lower than 1·0 in 7 centres, data available on request. This conclusion is consistent with the other large, population based studies that have investigated smoking in relation to H. pylori infection after assessed by serology, 2 by serology and the urea breath test, 3 and by serology and histology. 4 The last two studies 4, 5 used measures of current infection in addition to serology. Moreover, there is evidence suggesting that H. pylori infection is most commonly acquired in early childhood 6-9, that is, before most subjects take up smoking.

Those studies that have investigated the association between H. pylori and smoking in patients undergoing endoscopy have variously reported a positive, 10 negative 11 or no association. 12

The use of symptomatic patients may, however, lead to a spurious, non-causal relation between H. pylori and smoking because both H. pylori infection and smoking are independently related to gastric disease, especially peptic ulceration. The separate associations between H. pylori and peptic ulceration and between smoking and peptic ulceration do not imply that there is an overall association between smoking and H. pylori. Rather, it is plausible that smoking may increase the risk of disease in an H. pylori infected subject. 13

With regard to the use of serology to assess H. pylori infection the evidence suggests that, in the absence of treatment, H. pylori infections will persist for life. 14 The conclusion by Meyer et al, cited by Bateson, that spontaneous eradication of H. pylori might occur in healthy people is an hypothesis which was later retracted because of the low specificity of the serological test used in their study. 16 The only subjects likely to be seropositive in the absence of a current infection are those with chronic infections, eradication of which is unlikely, or both, as H. pylori infection cannot persist in such conditions. Such subjects would, however, be uncommon in the EUROMAG population where subjects were all aged under 65 years.

In conclusion, results from all of the population based studies weigh against the hypothesis that smokers are at an increased risk of H. pylori infection. We would also suggest that patient groups may be an inappropriate population in which to study this relation.

P WEBB DHU J ALAN M HOLLERD J NEWELL
(on behalf of the EUROMAG Study Group)
Imperial Cancer Research Fund Cancer Epidemiology Unit, University of Oxford, Gibson Building, The Wood, Oxford OX2 6HE

7 Dettenme M, Nyst JR, Jonas C, Chlapczyk Y, Deproc C, Buretue A. Clinical, endoscopic and histological findings in 1100 patients of whom 574 were colonised by Campylobacter pylori. Gut 1993; 34: 1672-4.