Studies on the enteropathy associated with primary hypogammaglobulinaemia

K Teahon, A D Webster, A B Price, J Weston, I Bjarnason

Abstract

Twelve patients with primary hypogammaglobulinaemia with diarrhoea not associated with known microbial pathogens were investigated. Histological evidence of inflammation was common in the stomach and jejunum. Moreover, eight of 10 patients undergoing colonoscopy had low grade 'microscopic colitis' with raised intraepithelial lymphocytes and an intact crypt architecture. Five of 12 patients had small intestinal inflammation on 111Indium leucocyte scintigrams and all had increased faecal excretion (normal <1%) of 111Indium (over four days), which varied in intensity from mild (faecal excretion of 111Indium = 1-3%) to that comparable with moderately active (7-14%) Crohn's disease. Three patients had small intestinal strictures superficially resembling Crohn's disease. Histologically, however, these lacked characteristic diagnostic features of Crohn's disease in two and the third patient had non-steroidal anti-inflammatory drug induced diarrheagrm like strictures. Six of seven who were most severely symptomatic were successfully treated with an elemental diet with rapid improvement of symptoms. The faecal excretion of 111Indium was repeated in five and all improved but histologically the colitis remained unchanged. These studies show that some patients with primary hypogammaglobulinaemia have intestinal inflammation unlike that found in classic inflammatory bowel disease. Elemental diet is a useful temporary measure in the treatment of these patients.

(Gut 1994; 35: 1244-1249)

A variety of intestinal abnormalities have been described in patients with primary hypogammaglobulinaemia. Patients with selective immunoglobulin A deficiency have an increased prevalence of coeliac disease1 2 and patients with common variable immunodeficiency often develop atrophic gastritis and are at increased risk of gastric carcinoma.3-5 In the small intestine, lymphoid nodular hyperplasia occurs with some regularity but is generally thought to be benign and of no clinical significance.6 7 8 At least 10% of patients, however, with hypogammaglobulinaemia have unexplained severe diarrhoea, abdominal pain, or weight, or all three, clinically reminiscent of that seen in patients with the acquired immunodeficiency syndrome.7

In 1972 Ament reported a gastrointestinal study of 39 patients with either X-linked agammaglobulinaemia or common variable immunodeficiency.8 Thirty were asymptomatic and of these three had Giardia lamblia and nine had a low grade colitis. Eight of nine symptomatic patients had Giardia lamblia. Most of the published work on intestinal function is confined to individual case reports.9-18 Collectively these suggest that patients with common variable immunodeficiency have jejunal histological findings ranging from normal to subtotal villous atrophy. Those with the most severe abnormalities may or may not respond to a gluten free diet. The precise relation to coeliac disease is, however, confounded by the fact that in only one patient was the diagnosis established with jejunal biopsies after gluten withdrawal and challenge.19 Curiously there have been six case reports of Crohn's like lesions in patients with X-linked agammaglobulinaemia or common variable immunodeficiency.20-25 These have usually presented as diarrhoea with intestinal strictures and histological examination has shown transmural inflammation, usually without granulomata.

The natural history of hypogammaglobulinaemia has been radically changed over the last decade by the use of intravenous gammaglobulins.7 This seems to have virtually eradicated Giardia lamblia as an intestinal pathogen in patients in the United Kingdom as in our clinic only one in about 100 patients has been positive during the past six years. The incidence, however, of other causes of diarrhoea and weight loss have not changed. We therefore investigated a group of patients with significant symptoms to define the nature of gastrointestinal pathology and to test the effect of treatment with an elemental diet that has been effective in Crohn's disease.26 27

Methods

SUBJECTS

The immunodeficiency clinic at Northwick Park Hospital has a special interest in X-linked agammaglobulinaemia and common variable immunodeficiency with about 100 outpatients attending for regular follow up. Over a 12 month period all adult patients with pan hypogammaglobulinaemia presenting with persistent or intermittent gastrointestinal symptoms of abdominal pain or diarrhoea, in whom repeated courses of antimicrobial treatment had been ineffective were investigated. Evidence of small intestinal bacterial overgrowth, which included both a...
TABLE I Clinical details and investigational findings in patients with hypogammaglobulinaemia

<table>
<thead>
<tr>
<th>No</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>Clinical presentation</th>
<th>Faecal excretion of 14C carbon labelled glycocholic acid breath test (n<1%)</th>
<th>Localisation of inflammation on scintigraphy</th>
<th>Upper small intestine Duodenum (D) Jejunum (J)</th>
<th>Colom</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>CVID</td>
<td>Weight loss diaphrague</td>
<td>4-3</td>
<td>Indeterminate</td>
<td>Subtotal villous atrophy excess IEL (D + J)</td>
<td>Colitis (UC like) excess IEL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>CVID</td>
<td>Weight loss diaphrague</td>
<td>7-2</td>
<td>Indeterminate</td>
<td>Subtotal villous atrophy excess IEL (D + J)</td>
<td>Microscopic pan colitis</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>CVID</td>
<td>Weight loss diaphrague</td>
<td>5-9</td>
<td>Indeterminate</td>
<td>Normal</td>
<td>Microscopic distal colitis excess IEL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>CVID</td>
<td>Weight loss diaphrague</td>
<td>10-9</td>
<td>Ileal</td>
<td>Mild partial villous atrophy (D)</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>CVID</td>
<td>Weight loss diaphrague</td>
<td>14-5</td>
<td>Ileal</td>
<td>Mild partial villous atrophy and inflammation (D)</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>CVID</td>
<td>Weight loss diaphrague</td>
<td>12-7</td>
<td>Ileal</td>
<td>Atrophic gastritis</td>
<td>Microscopic pan colitis excess IEL</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>XLA</td>
<td>Weight loss diaphrague</td>
<td>10-8</td>
<td>Small bowel</td>
<td>Not done</td>
<td>Not done</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>XLA</td>
<td>Recurrent diarrhoea</td>
<td>8-8</td>
<td>Ileal</td>
<td>Not done</td>
<td>Not done</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>CVID</td>
<td>Asymptomatic recurrent</td>
<td>2-2</td>
<td>Normal</td>
<td>Normal</td>
<td>Mild duodenitis (D)</td>
<td>Excess IEL</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>CVID</td>
<td>Asymptomatic recurrent</td>
<td>1-6</td>
<td>Normal</td>
<td>Atrophic HP gastritis</td>
<td>Mild duodenitis (D)</td>
<td>Microscopic pan colitis excess IEL</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>CVID</td>
<td>Asymptomatic recurrent</td>
<td>1-1</td>
<td>Normal</td>
<td>Dysplasia</td>
<td>Not done</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>CVID</td>
<td>Asymptomatic recurrent</td>
<td>2-3</td>
<td>Normal</td>
<td>Not done</td>
<td>Proctitis excess IEL</td>
<td></td>
</tr>
</tbody>
</table>

HP: Helicobacter pylori; IEL: intraepithelial lymphocytes; CVID: common variable immunodeficiency; XLA: x-linked agammaglobulinaemia; UC: ulcerative colitis.

14C carbon labelled glycocholic acid breath test and urinary indicans had been negative and there was no evidence of intestinal infection (stool for salmonella, shigella, campylobacter, ova, cysts, and parasites repeatedly negative) or enterotoxins in stool. Twelve patients were studied (seven females and five males), mean (SD) age 53 (13) years. Table I shows the clinical details. All were receiving regular intravenous gammaglobulins (Sandoglobulin, Sandoz Pharmaceuticals, Frimley, Surrey, UK), which contains immunoglobulin G and only traces of immunoglobulin A and M.

Informed consent was obtained from all patients and the studies were approved by Harrow Health Authority ethical committee.

INVESTIGATIONS

All patients were admitted to a metabolic research ward for the studies. All underwent 111Indium autologous leucocyte studies entailing abdominal scans within four hours of receiving the cells, to localise the inflammation and a four day faecal collection to quantify the inflammatory activity as previously described. The estimated radiation dose received, assuming that 300 mCi (11 MBq) dose of 111Indium leucocytes is injected is 8-5 mili Sieverts.

Ten patients had a full colonoscopy with serial biopsies after completion of the above studies and a gastroduodenoscopy with a biopsy specimen taken from the duodenum, antrum, and body. A Crosby capsule jejunal biopsy specimen was subsequently taken under x-ray control adjacent to the ligament of Trietz. Patients with abdominal pain had small intestinal barium examinations (follow through or enterolysis) and all had a lactose tolerance test.

TREATMENT

Patients 1–7 (Table I), with the most severe symptoms were treated with an elemental diet as previously described in patients with Crohn’s disease. Patients were discharged from hospital when they could manage the diet themselves.

Results

111Indium leucocyte studies

111Indium leucocyte scintigrams showed early localisation of inflammation in five patients (ileal in four and small intestinal in one). Figure 1 shows a representative scintigram. In a further three patients the 20 hour abdominal scintigrams were abnormal but precise localisation to the small intestine was not possible. Table I shows that the four day faecal excretion of 111Indium leucocytes was increased in all (n<1%), ranging from mild inflammation (111Indium excretion 1–3%) to that comparable with moderately active Crohn’s disease and ulcerative colitis (7–14.5%).
Figure 2: A low grade colitis from a patient with hypogammaglobulinaemia resembling lymphocytic colitis with surface epithelial degeneration and increased numbers of intraepithelial lymphocytes in the cryptal epithelium (haematoxylin and eosin, original magnification ×181).

Figure 3: A small intestinal follow through showing jejunal structures and separated jejunal loops because of a centrally located inflammatory mass.

HISTOPATHOLOGICAL STUDIES

Table I shows the main histological findings. In all but one patient, and at all sites, plasma cells were absent or occasional cells found only after prolonged searching. Nine patients had gastric biopsies of which five were normal. Of the four with abnormal biopsies two showed a mild pangastritis, but in two there was severe atrophy in corpus and antrum. Helicobacter pylori like organisms were identified in one patient.

Duodenal biopsies were available in eight patients. Two had villous atrophy with raised number of intraepithelial lymphocytes, two showed mild villous atrophy, two were inflamed but had intact villi, and two were normal.

Of the four patients in whom the jejunum was biopsied two were normal and two were flat and both had a positive lactose tolerance test (a flat blood glucose curve after 50 g of lactose) with diarrhoea. These two patients had had flat duodenal biopsy specimens.

Ten of the patients had a series of colonic biopsies in only one of whom they were normal. In one the picture was indistinguishable from ulcerative colitis apart from the absence of plasma cells and increased number of intraepithelial lymphocytes. In five of the remaining eight there was a total colitis, with the other three showing inflammation restricted to the sigmoid colon and rectum. The inflammation was mild in all cases and mostly restricted to the superficial half of the mucosa. It was predominantly lymphocytic with neutrophil polymorphs and eosinophils. Figure 2 shows the representative histology. In four the numbers of intraepithelial lymphocytes was considerably raised and in three mildly raised. The crypt architecture was intact, and crypt abscesses were not a feature.

Patients 5–7 (Table I) were particularly interesting as they had small intestinal strictures. Figure 3 shows a representative barium follow through from patient 7 (patient no 5 was similar). Loops are separated by an inflammatory mass and there are multiple tight jejunal strictures. The radiological findings are suggestive of Crohn’s disease.

Patient 7 had a resection of the diseased intestinal segment and in patient 5 the
Studies on the enteropathy associated with primary hypogammaglobulinaemia. There were scattered, small inflammatory pseudopolyps. There was a reduction of intestinal inflammation in each case. Repeat gastro-duodenoscopy and colonoscopy, however, showed no histological improvement.

Patients 1 and 3 are well at six and 12 months, patient 2 had a relapse at seven months. He started the diet again and is well six months later. Patients 4-7 relapsed within one month of resuming food. One had an intestinal resection, two required large doses of antibiotics, one of whom died from fulminating pneumonia and sepsis. The patient receiving NSAIDs was treated with metronidazole30 with a reduction in the faecal excretion of 111indium leucocytes from 9-7 to 3-5% and the diarrhoea is partially controlled with cholestyramine.

Discussion

Before the introduction of intravenous immunoglobulin treatment, the diarrhoea in many patients with primary hypogammaglobulinaemia was most often associated with Giardia lamblia, campylobacter or salmonella.7 Such pathogens are now rarely found in these patients. It is not clear whether protection results from the infused immunoglobulin G appearing in the saliva, or whether it crosses the intestinal mucosa to ‘neutralise’ luminal organisms. Despite ‘high dose’ intravenous immunoglobulin treatment, however, chronic severe diarrhoea remains an important clinical problem.

While there were mild and inconsistent histological changes in the stomach and proximal small intestine there was a high prevalence of a low grade colitis. All had an acute enteritis as shown by the 111indium leucocyte studies. Those with abdominal pain as the main feature were found to have luminal obstruction resulting from strictures. Significantly, in the patients with the most severe symptoms, treatment with elemental diet led to considerable, albeit temporarily, improvement in well being.

The upper gastrointestinal histopathological findings are in keeping with that previously reported. The gastritis was without activity in most cases and the jejunal morphological findings were perhaps less noticeable than expected. This contrasts with the frequency of lower small intestinal inflammation and colitis. The 111indium leucocyte scintigrams and faecal excretion show that most of these patients have an enteropathy, which has not previously been suspected when investigated by conventional techniques. The inflammatory activity is usually greater than that seen in intestinal infections31 and in NSAID induced enteropathy28 and is similar to that seen in classic quiescent or moderately active inflammatory bowel disease.25 28 The cause of the acute small intestinal inflammation is not evident. In the context of patients with hypogammaglobulinaemia it is tempting to relate the pathogenesis of the inflammation to deficient IgA production and secretion. In patients with Crohn’s disease there is decreased (possibly primary) spontaneous

Figure 4: A small intestinal resection segment from a patient with primary hypogammaglobulinaemia. There is a broad based fibrous stricture with proximal ulcers. There are scattered, small inflammatory pseudopolyps.

TREATMENT

Five patients had mild or intermittent symptoms at the time of study and were not treated. Seven (no 1-7) were treated with an elemental diet and stopped all normal food intake during the four week treatment period. Six patients had a similar response to that seen in acute Crohn’s disease26 27 with rapid improvement in well being, loss of lethargy, which was a prominent symptom in most cases, and cessation of diarrhoea. One patient did not improve significantly although the frequency of diarrhoea was reduced. Figure 1 shows a representative abdominal scintigram before and after successful treatment with an elemental diet. In five patients the faecal excretion of 111indium was assessed at the end of the treatment period. Table II shows that

<table>
<thead>
<tr>
<th>Patient no</th>
<th>Faecal excretion of 111indium (% injected dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
</tr>
<tr>
<td>2</td>
<td>7-2</td>
</tr>
<tr>
<td>3</td>
<td>5-9</td>
</tr>
<tr>
<td>5</td>
<td>14-5</td>
</tr>
<tr>
<td>6</td>
<td>12-7</td>
</tr>
<tr>
<td>7</td>
<td>10-8</td>
</tr>
</tbody>
</table>
secretion of mucosal IgA and greatly increased IgG secretion and it has been suggested that this may play an important pathogenic part in the disease.

The pattern of colitis was always of mild degree, and in all but one, in whom it resembled ulcerative colitis, it fell within the spectrum of microscopic or lymphocytic colitis. Characteristically such patients show a total colitis detected only by biopsy. There was a mild low grade inflammatory cell infiltrate throughout the mucosa with very little crypt damage or abscesses. A high proportion showed increased numbers of intraepithelial lymphocytes. Histologically there is some overlap with the condition of collagenous colitis but no evidence of an increased collagen plaque was seen in any of the patients reported here. The aetiology of this pattern of colitis is unknown but there has been speculation about it being an abnormal response to luminal antigens akin to that of coeliac disease, as a relation between the two has been described.

In the past there may have been a tendency to classify the gastrointestinal changes in patients with hypogammaglobulinaemia into the diagnostic category of classic inflammatory bowel disease, which bears with it the connotation that a change in mucosal immunoglobulin secretion was important in the pathogenesis of ulcerative colitis and Crohn's disease. In this series there was a superficial clinical and radiological resemblance with classic inflammatory bowel disease but the histopathology lacked diagnostic features, apart from one patient who had features of ulcerative colitis. It would seem that hypogammaglobulinaemia is associated, in its own right, with a specific form of intestinal inflammation with variable manifestations.

A consensus has emerged from published works that a gluten free diet is not of particular benefit to symptomatic patients with hypogammaglobulinaemia. Our patients in this category have, however, responded symptomatically to treatment with an elemental diet with significant reductions in the excretion of 111Indium leucocytes, similar to that seen in Crohn's disease, but with no significant change in mucosal histology. It would seem that treatment with elemental diets is a valuable temporary measure in severely symptomatic patients with hypogammaglobulinaemia, which should be tried when empirical treatment with antibiotics and corticosteroids have failed.

In summary a high prevalence of small intestinal inflammation and microscopic colitis was found in a group of patients with diarrhoea and hypogammaglobulinaemia treated with intravenous immunoglobulins. The histopathological features suggest a pattern of inflammation distinguishable from classic inflammatory bowel disease. In severely symptomatic patients with diarrhoea a trial of elemental diets may be advisable.