




Microflora, diet, and intestinal mucosa

TABLE IIII Effects of intestinal microflora on histochemical characteristics of intestinal mucins in conventional rats

Conventional rats fed commercial diet Conventional rats fed purified diet

Intestine and cell type PAS AB 2-5/PAS AB 1J0 PAS AB 2.5/PAS AB 1J0

Small intestine:
Surface mucus ++ +purple 0 (+) +pink 0

+ +purple
Surface goblet cells +++ + +DP (+) + + + +DP+purple + +
Upper crypt goblet cells +++ +purple + + + + +pink +

+ +purple
Lower crypt goblet cells + + + +DP (+) + + +purple (+)

++DP
Large intestine:

Surface mucus + +purple (+) 0 +purple 0
Surface goblet cells +++ +pink (+) + + +purple + +

+purple +pink
Upper crypt goblet cells +++ + +DP + + + + + +purple + +

+ +pink
Lower crypt goblet cells + + + +blue + (+) + +blue (+)

+purple

Intensity of reaction: 0 no reactivity; (+) weak reactivity; + moderate reactivity; + + strong reactivity; + + + intense reactivity.
DP=deep purple. PAS=periodic acid Schiff; AB=Alcian blue.

conventional rats receiving either the com-
mercial or the purified diet.

Surface mucus. The PAS reaction of the
surface mucus of the epithelium lining both the
small and large intestines was more intense in
the germ free rats fed on the purified diet. With
AB 2.5/PAS procedure in the germ free rats
fed on the purified diet there was no purple
staining in the surface mucus of the small
intestine. In contrast, in conventional animals
the pink and purple staining of surface mucus
in the small intestine of rats fed on a purified
diet indicates the presence of both neutral and
acidic mucins.

Goblet cells. In germ free rats fed the purified
diet, overall staining intensity was higher in the
surface goblet cells and in the upper crypt
goblet cells of the large intestine than in their
counterparts fed on the commercial diet. In
contrast to germ free rats, the goblet cells in the
small and large intestine of conventional rats
fed the commercial diet were found to be
strongly PAS positive indicating abundant
presence of neutral mucins.
The combined AB 2.5/PAS procedure

showed appreciable differences between the
relative proportions of acidic and neutral
mucins in the goblet cells of rats fed on
different diets. The surface and crypt goblet
cells in the small intestine of the germ free rats
fed the commercial diet stained deep purple

Figure 1: Mucosal epithelium of (A) small intestine and (B) large intestinal crypts from
germ free rats fed on a commercial diet stained by Alcian blue-periodic acid Schiff tech-
nique. Surface goblet cells and crypt goblet cells in the small intestine are stained deep purple
indicating that they contain both neutral and acidic mucins. Those in the large intestine are

predominantly stained pink. (Bar= 50 ,um)

(Fig 1 (A)), an indication that the neutral
mucins predominant in these animals. The
staining was less intense in the upper crypt
goblet cells of the germ free rats fed purified
diet. The surface goblet cells and upper crypt
goblet cells in the large intestine of the germ
free rats fed commercial diet contained no
acidic mucins (Fig 1 (B)), but they were
present in the lower crypt goblet cells. In con-
trast, the staining reactions in the upper crypt
goblet cells of the rats fed on the purified diet
indicated the presence of acidic mucins, and
the more intensely blue reaction in the deep
crypt goblet cells of the large intestine of the
germ free rats fed the purified diet indicates
abundant presence of both sulphated and
carboxylated acidic mucins. With the
combined AB-PAS procedure, the surface
goblet cells and upper crypt goblet cells ofboth
the small and large intestine of conventional
rats fed on a purified diet stained purple, an
indication that the acidic mucins predominate
in these animals. In the crypt goblet cells of
conventional rats fed a commercial diet, the
neutral mucins were found only in conjunction
with the acidic ones but the pink reaction in
some upper crypt goblet cells of the small and
large intestine of conventional, purified diet
fed rats indicates the presence of neutral
mucins (Fig 2(A)).
AB staining at pH 1.0 for assessment of

sulphated mucins showed a higher sulphate
content in the goblet cells of the small intestine
of germ free rats fed a purified diet compared
with those of conventional diet fed counter-
parts. In the large intestine the staining inten-
sity was greater in the upper crypt goblet cells
of germ free, commercial diet rats. The surface
goblet cells of conventional rats fed on
the purified diet stained more intensely
with AB 1.0 than those of their commercial
diet fed counterparts (Fig 2(B)). Goblet cells
at the bases of the crypts contained little or no
sulphated mucins.

Effects of the microflora
To assess the effects of conventional microflora
and of the interactions of the luminal nutrients
with the conventional microflora on intestinal
mucins, histochemical staining intensities were
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Figure 2: Large intestinal crypts of conventional ratsfed on a purified diet s
Alcian blue-periodic acid Schiffprocedure and with Alcian blue atpH 1 0.
in the upper crypt containing neutral mucins and (B) surface goblet cells co;
sulphated mucins are arrowed. (Bar=50 gm)
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QUANTITATIVE MORPHOLOGY
The quantitative data on the length of villi and
crypts and villus:crypt ratio of the small
intestines and length of crypts of the large
intestines are summarised in Table IV. The
germ free rats fed on a purified diet compared
with those fed on a commercial diet had
significantly reduced (p<0002) small intesti-
nal crypt lengths but increased crypt lengths
(p<005) of the large intestine. No differences
in villus lengths were observed between the

TABLE IV Effects of diet and intestinal microflora on rat intestinal morphology (values, mean (SEM))

Commercial diet Purified diet

Germ free Conventional Germ free Conventional Human flora
rats flora rats rats flora rats rats

Small intestine:
Villus length (gm) 562-56 (29 2) 604-64 (23-1)* 504-60 (65 7) 468-48 (8)4 396-96 (50-1)
Crypt length (,um) 182-00 (9.1) 180-56 (11.7)* 148-10 (5.8)t 150-72 (3.5)4 96-92 (12-4)
Villus:crypt ratio 3-12 (0.2) 3 40 (0.2) 3-37 (0.3) 3-14 (0 1)§ 4-12 (0.2)

Large intestine:
Crypt length (gm) 195-52 (6.6) 187-73 (11-8)* 238-5 (12-8)t 244-4 (8.4)4 152-08 (21-3)

For feeding regimes and experimental groups see table I and methods.
*Significantly different at p<0O001 from corresponding value for conventional rats fed a purified diet.
tSignificantly different at p<0 01 from corresponding value for rats inoculated with human faecal flora.
iSignificantly different at p<0O001 from corresponding value for rats inoculated with human faecal flora.
§Significantly different at p<001 from corresponding value for rats inoculated with human faecal flora.
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two dietary groups. In rats harbouring a
conventional microflora, the mean values of
villus and crypt lengths of small intestine were
significantly higher in the group fed on the
commercial diet but there was a reduction in
the crypt length in the large intestine.
The mean values of villus and crypt lengths of

small intestine and crypt lengths of large intes-
tine were similar in germ free and conventional
rats fed commercial diet and in germ free and
conventional rats fed the purified diet. There
was no difference in the ratio of the villus length
to crypt length in the small intestine. In rats fed
on the purified diet association with the human
flora resulted in a reduction in the villus and
crypt length in the small intestine and of crypt
length in the large intestine.
The rats associated with human flora

when compared with those harbouring a con-
ventional flora had significantly reduced lengths
of small intestinal villi and reduced lengths of
both small and large intestinal crypts.

Discussion
The present studies have confirmed the
previous histochemical observations8 14 23 that
the composition of secretory glycoproteins in
the intestinal mucosa of rats differs with the
region and with cell type. Our results in Tables
II and III indicate that these differences in
mucin composition are also influenced by diet
and the presence or absence of a microbial
flora in the intestinal lumen.

Neutral mucosubstances are the predomi-
nant type seen in the small intestine, whereas
acid mucosubstances were predominant in
the large intestine of conventionally reared
animals. Furthermore, the goblet cells in the
upper part of the large intestinal crypts differed
from those in the lower part in that they
contained AB pH 1-0 reactive sulphated
mucins. Although similar findings have
been described in previous histochemical
investigations, 8 9 13 24 25 the significance of
the differences in mucin distribution patterns
throughout the intestinal tract and functions of
various classes of intestinal mucins is still not
well understood.
The influence of diet on the composition of

intestinal mucins was explored in germ free and
conventional rats given either a diet of finely
powdered purified ingredients, including cellu-
lose as a source of fibre, or a more coarsely
ground diet of natural ingredients containing
crude fibre of mainly cereal origin. Our findings
indicated generally less neutral mucins in the
small intestine and the presence of sulphated
mucins in both small and large intestines of
animals fed on the purified diet, which might be
accounted for by the different characteristics of
the two diets, or of their fibrous components.
Although histochemical studies on responses to
dietary fibres have so far been limited to jejunal
goblet cells of pigs,26 there are other morpho-
logical studies which report that specific dietary
fibres may increase the secretory activity of
goblet cells in rodents.3 27
The comparisons between germ free

rats and their counterparts harbouring their

indigenous flora showed that, independently of
diet the intestinal tract responded to intralumi-
nal contamination by depletion of neutral
mucins from the globlet cells of the lower
crypts of the small and large intestines. From
the reactions observed to AB staining, it is
obvious that the presence of a microflora influ-
ences the relative proportions of sulphated and
sialylated species of acidic mucins.
When the intensity of PAS reaction of germ

free rats was compared with that in conven-
tional rats, the surface mucus and goblet cells
in rats harbouring a conventional flora were
more intensely stained. It is well known that
the amount of mucus in the intestinal lumen of
germ free rats is greater than that in their
conventional counterparts, because of the
degradative effect of bacterial mucinase.
However, as the parameter of staining intensity
was analysed in this study, a direct analogy
between staining activity and the amount of
mucus cannot be drawn. The degree of glycosy-
lation of mucus glycoproteins and hydration of
secreted mucus may alter the staining intensity
and it is possible that changes in the hydration
of mucus may have been partly responsible for
different staining intensities in our animals.

Changes in the carbohydrate composition of
intestinal mucins have been known to occur
during development28 29 and during the migra-
tion of crypt cells toward the epithelial sur-
face.9 It is well known that the migration of
epithelial cells along the villi is faster in con-
ventional than germ free animals. In this study,
in the presence of a conventional flora, goblet
cell mucins in the large intestine became more
sulphated along the crypt villus axis. This is
consistent with studies in the neonatal mouse,
where similar effects of the conventional flora
on the production of mucins have been
described.30 According to Heneghan16 the
villus:crypt ratio is higher in germ free animals
than conventional animals. This is in contrast
with our findings which indicate comparable
lengths ofvillus column and crypts in germ free
animals and conventional animals fed on either
the purified or the commercial diet. Similar
results to ours have been observed in studies by
Ishikawa et al 31 in the upper region of the small
intestine. When the morphological effects of
the two diets were compared in our germ free
animals, the most noticeable changes were
seen in the crypt lengths of small and large
intestines. Crypt size was decreased in the
small intestine of rats fed a purified diet, and
although the villus height did not change
significantly, it was clear that the increased
crypt length in the large intestine observed in
this group of animals reflected an increased
amount of neutral mucins. Our finding of
no changes in villus lengths contrasts with
the results of a morphological study on
conventionally fed rats by Sigleo et al,32 and
this discrepancy suggests that there may have
been an interaction between the diet and
microbial activity33 in their studies.

Although the mechanisms responsible for
structural and chemical changes in the intes-
tinal mucosa are unknown, our results show
that the presence of a microbial flora and the
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nature of the diet can determine the shape and
mucus secretion of the intestinal epithelium
and its supporting stroma. Since the thickness
of the surface mucus and the chemical com-
position of surface mucins is linked to a
dynamic equilibrium between the continuous
secretion of mucins from the goblet cells and
their degradation within the intestinal lumen,
it is appropriate, therefore, to assess the com-
position of the surface mucus in response to
intraluminal stimuli of different diets and
different species of gut flora. The evaluation of
surface mucus is prone to artifacts of fixation
and should be considered with caution. It
seems reasonable, however, to assume that the
comparison between staining intensities of
surface mucus in our animal groups, if all
samples are processed at the same time and
analysed by standardised histological methods,
are valid. The effects of the human flora on the
gut structure and mucus composition were in
many ways similar to those of the indigenous
rat flora. There were, however, some
differences, for instance in the composition of
the surface and goblet cell mucus and the
length of the large intestinal crypt cells, which
merit more detailed investigation. Although
they may reflect real differences in response to
the two types of flora, it is also possible that
when a human flora is inoculated in the germ
free animal, its establishment and subsequent
interaction with the intestinal tract may
induce changes not seen with an indigenous

flora where colonisation is not subject to
experimental manipulation.
The findings of altered mucosal morphology

and mucin biosynthesis with particular dietary
patterns in the presence of an indigenous or a
human microbial flora described in this work
strongly emphasises the use of the rat as
a model system for pathogenesis of intestinal
disease. Our results on human flora rats are
preliminary and more detailed studies are
needed to ascertain whether the HFA rat is a
more appropriate model for man than the
conventional rat. Further studies of changes in
mucin composition by various intraluminal
stimuli will help in understanding the
mechanisms of intestinal disorders and in
developing probes for detection of bowel
disease. Morphometric analysis of goblet cell
glycoproteins using an image processor is
now being carried out in our animal model to
further elucidate the interaction between
the mucin secretion and intestinal luminal
components.
The authors are grateful to the EC-FLAIR Concerted Action
Programme No 9 which sponsored part of this work and to Dr
Yoshio Saito, Calpis International Flora Laboratory,
Kanagawa, Japan, for providing the purified diet.
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