LETTERS TO THE EDITOR

Nitric oxide synthase in gastric mucosa

EDITOR,—Rachmielwitz et al have reported (Gut 1994; 35: 1394–7) increased nitric oxide synthase activity in the antral and fundal gastric mucosa from patients with duodenal ulceration and Helicobacter pylori infection. Nitric oxide synthase activity was estimated from citrulline production.

However, we have measured citrulline concentrations in gastric antral biopsy specimens (by LKB biochrom amino acid analyser) as an index of the formation of cycG ornithine and found no differences before and after healing duodenal ulcers by eradication of H pylori.

In addition we estimated nitric oxide synthase activity in the cytosolic supernatant of antral mucosal biopsy specimens from the inhibition by monomethyl-L-arginine (L-NMMA) on the conversion of 14C ornithine to 14C citrulline. Initially we used the same method as used by Rachmielwitz et al, and estimated 14C citrulline concentrations using Dowex AG 50W-X8 (sodium form) columns. However, to validate this method we applied the fraction recovered from the column to thin layer chromatography. 14C urea, 14C ornithine, and other unidentified radioactivities and products were found in addition to 14C citrulline. Therefore, we conducted the experiments using thin layer chromatography to avoid possible inaccuracies of the Dowex column method. Once again we did not find an increase in nitric oxide synthase activity in H pylori positive duodenal ulcer patients, but discovered that in this tissue L-NMMA significantly increased the formation of cycG ornithine.

Demonstration of nitric oxide synthase activity in the Rachmielwitz study depends upon the inhibitory effect of monomethyl-L-arginine (incorrectly labelled L-NNAME in their paper) on 14C citrulline, which was estimated from the scintillant activity of the Dowex elute thought to arise from citrulline alone. As we have shown this elute contains other radioactivated metabolites of ornithine, it is possible Rachmielwitz et al are measuring the inhibitory effect of L-NMMA on the formation of other labelled substances such as 14C ornithine from 14C arginine by glycine aminotransferase.

The Dowex AG 50W-X8 separation as a measurement of nitric oxide synthase activity originally described by Bredt and Snyder was validated by thin layer chromatography for cerebellar tissue. It may not be accurate when applied to human tissue, and, as suggested by them, should be validated by thin layer chromatography for each new tissue.

J S MIDDLETON
Department of Medicine, Hadassah University Hospital, Jerusalem, Israel

Reply

EDITOR,—We read with interest the letter of Middleton et al casting doubts on the validity of the assay used by us for determination of gastric nitric oxide synthase activity.

We saw NADPH dependent L-NMMA inhibitable turnover of L-arginine in the gastric mucosa of patients with duodenal ulcer and H pylori infection. We attributed this activity to nitric oxide synthase. Middleton et al question the specificity of this assay, which is presumed to measure the conversion of L-arginine by citrulline (by nitric oxide synthase). They suggest that L-NMMA also inhibits the formation of ornithine in these tissues. If true, we might be measuring NADPH dependent L-NMMA-inhibitable conversion of L-arginine to ornithine. This would raise several possibilities: (a) that the assay and inhibitors are not specific for nitric oxide synthase—a surprising finding; (b) that nitric oxide synthase activity results directly in formation of ornithine rather than citrulline, which is unlikely; or (c) that citrulline is the primary product of nitric oxide synthase, but undergoes conversion to ornithine. For example, citrulline might be converted back to L-arginine by the actions of arginosuccinate synthetase/arginosuccinase; L-arginine could then be converted to ornithine by the actions of arginase.

We look forward to further studies on arginine metabolism in the gut of patients with H pylori infection, which are necessary to validate the concerns of the authors regarding the specificity of a commonly used assay.

J S STAMLER
Pulmonary and Cardiovbastional Division, Duke University Medical Center, USA

Mycobacterium paratuberculosis and Crohn’s disease

EDITOR,—We have studied the participation of mycobacteria in Crohn’s disease and are interested in articles published on this topic. The paper of H M Fidler et al (Gut 1994; 35: 506–10) clearly highlighted the ubiquitous nature of Mycobacterium paratuberculosis and its detection with the highly sensitive and specific tool of polymerase chain reaction in human tissue.

In our study (unpublished data) we were specifically interested in the group of patients with Crohn’s disease with terminal ileum involvement, although three patients with classic Crohn’s colitis alone on histological examination, were also included.

Polymerase chain reaction assays based on the direct amplification of 229 bp fragment and 400 bp of the repetitive mycobacterial insertion sequence IS900 present in the genome of M paratuberculosis, were applied to 73 sections of paraffin wax embedded tissue of 26 histologically confirmed Crohn’s disease patients, all of which were negative on Ziehl-Neelsen staining for acid fast bacilli.

These sections were divided into those with an area of minimal involvement and those with an area of well established ulceration. In 18 cases lymph nodes were also available for study. Granulomata were present in only one of 23 of 73 sections.

As the incidence of pulmonary tuberculosis in South Africa is among the highest in the world, the presence of M tuberculosis was also investigated, to exclude this organism as a complicating factor.

Controls consisted of patients with colon cancer who had undergone a right hemicolec- tomy (n=34, 102 samples).

No positive amplification of the 400 bp sequence in any of the 26 patients after 40 cycles was found. In some of the 229 bp sequence amplification reactions, a slight product was found, pointing to the possible presence of M paratuberculosis. Reamplification of the 229 bp products was done and positive reamplification was detected in 10 of 26 (38%) of Crohn’s disease patients and in four of 35 (11%) controls.

There was a greater chance of detecting the organism in non-granulomatous sections of the disease 12 of 41 (29%) than in sections showing granulomata of one of 23 (4%).

There were no cases of Crohn’s disease that were associated with tuberculosis but eight terminal ileum samples with Johnh’s disease confirmed by culture and histological examination tested positive for M paratuberculosis DNA. The internal laboratory controls for correlation of samples repeatedly tested negative.

These initial results suggest that M paratuberculosis does not play a part in the pathogenesis of Crohn’s disease. The detection of M paratuberculosis DNA in 38% of Crohn’s disease patients shows the prevalence of M paratuberculosis in Crohn’s disease after 40 cycles combined with a low detection rate even after reamplification suggests that there is no association between M paratuberculosis and the pathogenesis of Crohn’s disease remains unclear.

L E RASMUS
T VICTOR
P VAN EEDEN
V FALCK
PA VAN Helden
Gastroenterology Unit, Department of Internal Medicine, University of Stellenbosch, Medical School, PO Box 19063, Tygerberg, 7505, South Africa


