The important difference between these two studies is that Gaslander et al found a raised plasma cholecystokinin concentration in rats with duodenogastric reflux (at two weeks and six weeks), whereas we found a normal plasma cholecystokinin concentration at six months. Cholecystokinin receptor antagonist devazepide did not completely inhibit the trophic effect of the operation, they suggest that gastrin may also be important as an intermediary, our own data clearly support this interpretation. In the context of promoting neoplasia, the longterm hypergastrinemia may be at least as relevant as the transient hypercholecystokininemia. That cholecystokinin alone could play a part in the incidence or growth of pancreatic cancer in patients with previous gastrectomy is confirmed by another study (again not cited) showing enhanced pancreatic carcinogenesis in rats with distal gastrectomy; an operation that lowers serum gastrin.

Using a different surgical model, massive enterectomy, we found two candidate hormones for the role of pancreatotropin: enteroglucagon and cholecystokinin.1 Cholecystokinin may be the more important because the cholecystokinin receptor antagonist longlomide completely abolished the effect of this operation on pancreatic growth. We have previously speculated on the relation between these two hormones.2 The strongest stimulus to pancreatic growth and carcinogenesis in our experience has been pancreatico-jejunal diversion; here again cholecystokinin seems to be the key intermediary, and longlomide prevents the response.3

R C N WILLIAMSON
Department of Surgery,
Hammersmith Hospital,
Du Cane Road,
London
t
P WATANAPA
Department of Surgery,
Siriraj Hospital,
Bangkok, Thailand

Reply

EDITOR,—We appreciate the interest that Professors Williamson and Watanapa have shown in our paper and apologise for failing to reference the important contributions they have made in the field of pancreatic growth and carcinogenesis. These authors suggest that an important difference between their study and ours is that we saw an increase in circulating cholecystokinin concentrations and they did not. In fact, mean basal cholecystokinin concentrations in their study were 59% higher in animals with splat gastrojejunoanastomosis than controls, although this did not reach statistical significance. They suggest that in our larger series it is probable that this would have reached statistical significance. Furthermore, in their study of partial gastrectomy, basal cholecystokinin concentrations were only 46% above control and lower than those seen in their split gastrojejunoanastomosis group, but here they concluded that partial gastrectomy increases plasma cholecystokinin.2 It is interesting to note that humans with longstanding pancreatic cancer have increased concentrations of cholecystokinin postprandially, although their gastrin concentrations are quite normal.3 Although gastrin concentrations were increased after gastrojejunostomy, we do not feel that this hormone alone is responsible for the pancreatic growth as the trophic effect is not mimicked by omeprazole treatment even though gastrin concentrations are higher than after split gastrojejunostomy.4

We do not fully agree with the conclusion drawn that the study of distal gastrectomy in rats confirms that cholecystokinin may play a part in the increased incidence of pancreatic cancer after partial gastrectomy because in our study no trophic effect on the pancreas was seen. Furthermore, while we agree that these hormones are of importance for pancreatic growth and neoplasia in the rat, their role in human pancreatic carcinogenesis, the common tumour type in humans, is controversial.4,8 The authors go on to state that they found two candidate hormones, enteroglucagon and cholecystokinin, for the pancreatotrophic effect associated with massive small bowel resection and pancreatico-jejunal diversion. However, the increase of cholecystokinin and enteroglucagon and pancreatic growth associated with these surgical procedures had been described earlier.9

TE ADRIAN
Cancer Center,
Creighton University School of Medicine,
Omaha, USA

T GASSLANDER
Department of Surgery,
Sahlgrenska University Hospital,
Linköping, Sweden

Expression of adhesion molecules in human Peyer's patches

EDITOR,—We became aware of a publication in Gut by Fujimura and Kihara on human Peyer's patches while reviewing published works (Gut 1994; 35: 46–50); the title of this paper was exciting because our laboratory has without success tried to show expression of intercellular adhesion molecule-1 (ICAM-1) and HLA-DR on human mesenchymal cells of the appendix, or diseased gut (unpublished findings). This is also in accordance with other reports.1,4 We were able to upregulate ICAM-1 expression in the human adenocarcinoma cell line SW295, and thus that ICAM-1 expression is upregulated in the latter, particularly the combinations interferon γ (IFN-γ)/tumour necrosis factor α, and IFN-γ/interleukin 1 in the presence of butyrate.6 It was therefore quite intriguing when the title of the article by Fujimura and Kihara suggests that the follicle associated epithelium of Peyer's patches expresses ICAM-1. Unfortunately, the study had been performed in rats rather than humans and the title was further misleading because the localisation described for ICAM-1 was restricted to a subepithelial layer of fibroblasts. Contrasting this finding, which was claimed to be related to the unique immunobiology of follicle associated epithelium, the authors do not suggest that the follicle associated epithelium of ICAM-1 is not present in the villus epithelium. They therefore speculated that the massive lymphocyte traffic between follicle associated epithelium and the lymphoid follicles of Peyer's patches might be explained by the topical ICAM-1 expression.

In our opinion this hypothesis is not plausible. Lymphocytes in follicle associated epithelium are uniformly scattered, being particularly concentrated in small aggregates related to the 'membrane' cells; outside these foci the intraepithelial occurrence of lymphocytes is more similar to that seen in the villus epithelium in terms of numerical as well as phenotypic distribution.3,4 In humans the diffusely scattered intraepithelial lymphocytes are mainly CD8+ T cells,9 whereas the T cell receptor β chain is expressed in a small (4–5%) admixture of the follicle associated epithelium cells.7 The only adhesion molecule suggested to be important for their homing to the epithelium is the integrin αEβ7 (detected by monoclonal antibody HML-1),10 which apparently binds in the E-carboxylic acid region of ICAM-1. In situ lymphocytes found in relation to the membrane cells might rather be ascribed to the antigen transporting capacity of these special cells of the villus epithelium. In fact, only 50% of such aggregated lymphocytes consist of B cells—apparently representing topical extensions of the underlying follicles—whereas the other 50% of the T cell subset, the CD4+CD35R+ T cells (memory-helper phenotype),12 but without admixture of the T cell receptor γδ subtype.13 It is indeed difficult...
to accept that the rather even distribution of ICAM-1 below the follicle associated epithelium, as reported by Fujimura and Kihara, should have anything to do with the numerically and phenotypically heterogeneous distribution of lymphocytes in this epithelium.

The authors furthermore discuss extensively the nature of membrane cells; without reservation it is claimed that these cells express MHC class II molecules and therefore may be present luminal antigens to T cells. This area is quite controversial, however, and the first study on class II expression in rat Peyer’s patches reported that the complete follicle associated epithelium is negative. 13 This has been contradicted subsequently but we found human membrane cells to be negative for HLA-DR compared with the strongly positive remaining follicle associated epithelium. 14 15 The antigen presenting capacity of membrane cells is questionable although they are probably to some extent able to degrade foreign material as suggested by their lysosome like structures 16 and cathepsin E expression. 17 We have recently proposed that membrane cells might provide an opportunity for juxtaposed B cells to prevent partially processed luminal antigens to CD4+ memory T cells, thereby promoting diversification of mucosal immune response. 18

In view of this immunobiological complexity of gut associated lymphoid tissue we feel that it is too speculative when Fujimura and Kihara on the basis of their findings in rat Peyer’s patches block any potential of ICAM-1 as a potential treatment for inflammatory bowel disease in the future.

P BRANDTZÆG
IN FARSTAD
Laboratory for Immunohistochimistry and Immunopathology (LIIPAT),
Institute of Pathology,
The National Hospital, Rikshospitalet,
N-0027 Oslo, Norway

3 Scheynius A, Engstrand L. Gastric epithelial cells show increased expression of post-activated ICAM-1 with "lymphocytotropic" localization to M and cell memory T cells, but not in in vitro studies. We do not know how to explain this discrepancy and suppose that the different findings may be related to different species or the property of the mononuclear antibodies. We agree that it was too speculative when we, on the basis of our findings in rat Peyer’s patches, suggested blocking of ICAM-1 as a potential treatment for inflammatory bowel disease in the future.

We also found very interesting their description of the heterogeneity of membrane cell associated B and T cells in human Peyer’s patches—that is, that the B cells are strikingly heterogeneous with characteristics of both mantle (slgD+slgM+) and marginal (slgD- slgM- ) zone lymphocytes, and that some lymphocytes in membrane cell pockets among follicle associated epithelium showed Ki-67 and CD45RO weakly. 1 They, therefore, suggested that B lymphocytes can proliferate and differentiate topically in the membrane cell pockets. These findings and suggestions are very impressive and we agree with their conclusions.

We agree also that it is still controversial whether membrane cells sites of the gut associated lymphoid tissue express HLA-DR. Further investigations are also required to find the mechanism regulating lymphocyte migration into the follicle associated epithelium of human gut associated lymphoid tissue.

Y FUJIMURA
T KIHARA
Division of Gastroenterology,
Department of Medicine,
Kochi Medical School,
577 Matsushima, Kochi 783-01, Japan

Letters

5 Farstad IN, Halstensen TS, Fausa O, Brandtzæg P. Heterogeneity of M cell associated B and T cells in human Peyer’s patches. Immunology 1994; 83: 457-64.

Ménétrier’s disease

EDITOR.—We read with interest the case report by Bayerdorffer et al showing that Helicobacter pylori is a potential cause of Ménétrier’s disease (Gut 1994; 35: 701-4). The findings in their patient showed clearly that H pylori gastritis can present as hypertrophic gastritis combined with protein loss and that eradication of the H pylori infection can lead to rapid disappearance of mucosal hypertrophy and restoration of normal gastric mucosa. We disagree, however, with the authors’ presumption that Ménétrier’s disease and hypertrophic gastropathy are synonymous. There are many reasons for believing that equating the two terms is ill advised. (1) A variety of conditions can cause enlarged gastric folds. In addition to the true ‘hyperplastic gas- tropathies’ Ménétrier’s disease and Zollinger-Ellison syndrome, enlargement of gastric folds are seen in hypertrophic gastritis associated with various infections, including H pylori, cytomegalovirus, histoplasmosis, and syphilis, and in miscellaneous other diseases such as hypothyroidism, amyloidosis, and Cronkhite-Canada syndrome. (2) While increased gastric protein loss can be found occasionally in many disorders that are associated with gastric folds, increased protein loss is not a universal feature of any of these disorders. It is typically lacking in Zollinger-Ellison syndrome, and its reported occurrence in Ménétrier’s disease is variable merely depending on different authors’ diagnostic criteria for this gastropathy. (3) The cases described in 1888 by Ménétrier as ‘polya- Dome in nappe’ had as their cardinal feature exuberant proliferation of gastric mucous cells. This is a distinct entity that has been appropriately termed ‘massive foveolar hyperplasia’. 2 3 Furthermore, Ménétrier’s descriptions and illustrations do not suggest that chronic gastritis, the hallmark of H pylori gastritis, is characteristic of Ménétrier disease, is probably a manifestation of H pylori gastritis with large folds. 4 We urge authors and editors not to use the term Ménétrier’s disease as a generic designation for membrane conditions with any or any of the gut associated lymphoid tissue express HLA-DR. Further investigations are also required to find the mechanism regulating lymphocyte migration into the follicle associated epithelium of human gut associated lymphoid tissue.

3 Farstad IN, Halstensen TS, Fausa O, Brandtzæg P. Heterogeneity of M cell associated B and T cells in human Peyer’s patches. Immunology 1994; 83: 457-64.