Drug induced acute pancreatitis: incidence and severity

P G Lankisch, M Dröge, F Gottesleben

Abstract
To determine the incidence and severity of drug induced acute pancreatitis, data from 45 German centres of gastroenterology were evaluated. Among 1613 patients treated for acute pancreatitis in 1993, drug induced acute pancreatitis was diagnosed in 22 patients (incidence 1.4%). Drugs held responsible were azathioprine, mesalazine/sulfasalazine, 2',3'-dideoxyinosine (ddI), oestrogens, frusemide, hydrochlorothiazide, and rifampicin. Pancreatic necrosis not exceeding 33% of the organ was found on ultrasonography or computed tomography, or both, in three patients (14%). Pancreatic pseudocysts did not occur. A decrease of arterial P02, reflecting respiratory insufficiency, and an increase of serum creatinine, reflecting renal insufficiency as complications of acute pancreatitis were seen in two (9%) and four (18%) patients, respectively. Artificial ventilation was not needed, and dialysis was necessary in only one (5%) case. Two patients (9%) died of AIDS and tuberculosis, respectively; pancreatitis did not seem to have contributed materially to their death. In conclusion, drugs rarely cause acute pancreatitis, and drug induced acute pancreatitis usually runs a benign course.

(Gut 1995; 37: 565–567)

Keywords: acute pancreatitis, aetiology, drugs.

Ever since the first reports on cortisone1 and thiazides2 inducing acute pancreatitis, a large number of single case reports were published on — often fatal — drug induced acute pancreatitis. Subsequent review articles criticised the time interval between drug application and the onset of acute pancreatitis, dose, and rechallenge trials. Published reports have identified about 50 drugs that definitely or possibly may be held responsible for inducing acute pancreatitis.3-6

Our report deals for the first time with the question of how frequently drug induced acute pancreatitis actually occurs and whether it takes as severe a course as indicated in many case reports.

Results
During the 12 month period of 1993, 1613 patients with acute pancreatitis had been treated by the 45 participating centres of gastroenterology. Alcoholism was the most prevalent aetiology, followed by biliary tract disease. Smaller groups had other (post-endoscopic retrograde cholangiopancreatography (ERCP), post-traumatic, postoperative, viral or unknown aetiologies). In 22 patients (12 female, 10 male, mean age 42, range 19–80 years), drug induced acute pancreatitis was diagnosed, the incidence being 1.4% (Table I).

Table I

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>No of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>729 (45-2)</td>
</tr>
<tr>
<td>Biliary</td>
<td>635 (39-4)</td>
</tr>
<tr>
<td>Other</td>
<td>92 (5-7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>135 (8-4)</td>
</tr>
<tr>
<td>Drugs</td>
<td>22 (1-4)</td>
</tr>
</tbody>
</table>

Drugs considered responsible were azathioprine (n=6), mesalazine/sulfasalazine (n=5), 2',3'-dideoxyinosine (ddI) (n=4), oestrogens (n=3), frusemide (n=2), and hydrochlorothiazide and rifampicin (n=1 each) (Table II). For ethical reasons, a rechallenge was refused by most participating hospitals and performed with positive results in only three cases (azathioprine; n=2; mesalazine; n=1) (Table II).

Mean hospital stay was 25–5 days, but varied considerably from patient to patient (range 2–78 days). Less than one third necroses were found on ultrasonography or computed
Severity of the disease in 22 patients with drug induced acute pancreatitis

<table>
<thead>
<tr>
<th>Parameters of severity</th>
<th>No of patients (%)</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necroses on ultrasound/computed tomography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>19 (86)</td>
<td>ddI (2X)</td>
</tr>
<tr>
<td><33%</td>
<td>3 (14)</td>
<td>Azathioprine</td>
</tr>
<tr>
<td>33–50%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>>50%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pseudocysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>22 (100)</td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Acute respiratory failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO2 >70 mm Hg</td>
<td>20 (91)</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>PO2 60-70 mm Hg</td>
<td>1 (5)</td>
<td>Oestrogens</td>
</tr>
<tr>
<td>PO2 <60 mm Hg</td>
<td>1 (5)</td>
<td>ddI</td>
</tr>
<tr>
<td>Artificial ventilation</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Acute renal failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum creatinine <1-2 mg/dl</td>
<td>17 (77)</td>
<td>ddI</td>
</tr>
<tr>
<td>Serum creatinine >1-2 mg/dl</td>
<td>4 (18)*</td>
<td>Frusemide</td>
</tr>
<tr>
<td>Dialysis</td>
<td>1 (5)*</td>
<td>Hydrochlorothiazide</td>
</tr>
<tr>
<td>Fatal outcome</td>
<td>2 (9)</td>
<td>ddI</td>
</tr>
</tbody>
</table>

*One patient with chronic renal failure was excluded.

Discussion

Our data show that drug induced acute pancreatitis occurs rarely in clinical practice and usually takes a benign course.

It may be argued, however, that the retrospective design of our study is a drawback and that in a prospective trial the frequency would have been higher. A prospective trial would mean that all patients receiving drugs definitely or probably associated with acute pancreatitis would have been screened for possible development of acute pancreatitis. Such a study is not easy for several reasons. The number of drugs possibly inducing acute pancreatitis is large, time intervals between first application of any one drug and development of acute pancreatitis differ; and screening procedures for drug induced pancreatitis such as enzyme measurement and ultrasound examination may be ineffective.

The low incidence of drug induced acute pancreatitis in our study possibly reflects the normal clinical situation. A higher incidence rate has been found among patients with diseases especially associated with acute pancreatitis, such as inflammatory bowel disease and AIDS.

Severity of drug induced acute pancreatitis was low in our study. This differs from published reports, which show a high incidence of fatal outcome at least from azathioprine and ddI. The incidence rate varied from 7-4% (seven of 95 patients) to 15-9% (seven of 44 patients) to 23-5% (12 of 51 patients). It should be noted that in this study drug induced acute pancreatitis was only reported in adults and that in paediatric patients the incidence of asparaginase, corticosteroid, or valproic acid induced acute pancreatitis, or all three, may be more frequent.

Severity of drug induced acute pancreatitis was low in our study. This differs from published reports, which show a high incidence of fatal outcome at least from azathioprine, ddI, and ddI. However, such a high incidence probably does not reflect clinical routine (Table III). Most studies on drug induced acute pancreatitis are case reports that are meant to serve as a warning or signpost for other clinicians. This explains why there are more reports on severe than mild cases.

Furthermore, all fatal cases after an intake of azathioprine occurred after renal transplantation, and all ddI induced cases coincided with AIDS, both underlying diseases being not infrequently associated with acute pancreatitis. Of the three patients with fatal frusemide pancreatitis, one had a myocardial infarction and the other a cardiac problem, in addition, and the third patient was an alcoholic with pancreatic calcifications, a sign of chronic pancreatitis, who died of renal failure in a diabetic coma.

In accordance with our findings, there are no fatal cases of acute pancreatitis in published reports following mesalazine/sulphasalazine, oestrogens, and rifampicin.

Despite the low incidence and the moderate severity of drug induced acute pancreatitis, all patients with acute pancreatitis of unknown aetiology should be carefully questioned on drugs possibly responsible for the induction of the disease. In positive cases, the drug held responsible should be omitted to reduce the possibility of further episodes of acute pancreatitis.

The authors give their thanks to all contributors to the study and a complete list is available from the authors.

Gut: first published as 10.1136/gut.37.4.565 on 1 October 1995. Downloaded from http://gut.bmj.com/ on October 28, 2023 by guest. Protected by copyright.
Drug induced acute pancreatitis: incidence and severity

55 Mattson R. Side effects of rifampicin. A clinical study (Dissertation). Helsinki, Medical Faculty of the University of Helsinki, 1973; 1–52.