Drug induced acute pancreatitis: incidence and severity

P G Lankisch, M Dröge, F Gottesleben

Abstract
To determine the incidence and severity of drug induced acute pancreatitis, data from 45 German centres of gastroenterology were evaluated. Among 1613 patients treated for acute pancreatitis in 1993, drug induced acute pancreatitis was diagnosed in 22 patients (incidence 1.4%). Drugs held responsible were azathioprine, mesalazine/sulfasalazine, 2',3'-dideoxyinosine (ddI), oestrogens, frusemide, hydrochlorothiazide, and rifampicin. Pancreatic necrosis not exceeding 33% of the organ was found on ultrasonography or computed tomography, or both, in three patients (14%). Pancreatic pseudocysts did not occur. A decrease of arterial PO_2, reflecting respiratory insufficiency, and an increase of serum creatinine, reflecting renal insufficiency as complications of acute pancreatitis were seen in two (9%) and four (18%) patients, respectively. Artificial ventilation was not needed, and dialysis was necessary in only one (5%) case. Two patients (9%) died of AIDS and tuberculosis, respectively; pancreatitis did not seem to have contributed materially to their death. In conclusion, drugs rarely cause acute pancreatitis, and drug induced acute pancreatitis usually runs a benign course.

(Gut 1995; 37: 565–567)

Keywords: acute pancreatitis, aetiology, drugs.

Ever since the first reports on cortisone and thiazides inducing acute pancreatitis, a large number of single case reports were published on – often fatal – drug induced pancreatitis. Subsequent review articles criticised the time interval between drug application and the onset of acute pancreatitis, dose, and rechallenge trials. Published reports have identified about 50 drugs that definitely or possibly may be held responsible for inducing acute pancreatitis. 3–6

Our report deals for the first time with the question of how frequently drug induced acute pancreatitis actually occurs and whether it takes as severe a course as indicated in many case reports.

Patients and methods
To determine the incidence of drug induced pancreatitis, we asked 45 German centres of gastroenterology how many patients they had treated in 1993 for acute pancreatitis and how often the aetiology was drug related. To obtain an impression of disease severity, we further asked for the length of the hospital stay, the occurrence of acute respiratory and renal failure, the development of pancreatic pseudocysts and necroses, and resulting death rate.

All data on drug induced pancreatitis were evaluated by us. We included only those patients for whom the centres had already excluded all other aetiologies, except drugs, which have been shown either in published reports or in the specifically reported patient to reinduce acute pancreatitis on rechallenge, or which are among those – according to previous reports – strongly suspected of inducing acute pancreatitis. 3–6 When fatal outcome was reported, we tried to establish whether this resulted from pancreatitis or the underlying disease.

Each centre was responsible for the exclusion of the main aetiologies of acute pancreatitis, namely alcohol and biliary disease, which was done by means of case history given by the patient or his relatives/friends (alcohol) or ultrasound (biliary disease).

Furthermore, all centres were responsible for the diagnosis of acute pancreatitis, which was usually based on typical signs and symptoms, an increase in enzyme activity, and the signs of the disease upon imaging procedures, such as ultrasound and computed tomography, which were asked for.

Results
During the 12 month period of 1993, 1613 patients with acute pancreatitis had been treated by the 45 participating centres of gastroenterology. Alcoholism was the most prevalent aetiology, followed by biliary tract disease. Smaller groups had other (post-endostructural cholangiopancreatography (ERCP), post-traumatic, postoperative, viral genesis) or unknown aetiologies. In 22 patients (12 female, 10 male, mean age 42, range 19–80 years), drug induced acute pancreatitis was diagnosed, the incidence being 1.4% (Table I). Drugs considered responsible were azathioprine (n=6), mesalazine/sulfasalazine (n=5), 2',3'-dideoxyinosine (ddI) (n=4), oestrogens (n=3), frusemide (n=2), and hydrochlorothiazide and rifampicin (n=1 each) (Table II). For ethical reasons, a rechallenge was refused by most participating hospitals and performed with positive results in only three cases (azathioprine, n=2; mesalazine, n=1) (Table II).

Mean hospital stay was 25–5 days, but varied considerably from patient to patient (range 2–78 days). Less than one third necroses were found on ultrasonography or computed...
TABLE II Severity of the disease in 22 patients with drug induced acute pancreatitis

<table>
<thead>
<tr>
<th>Parameters of severity</th>
<th>No of patients (%)</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necroses on ultrasound/computed tomography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent <33%</td>
<td>19 (86)</td>
<td>ddl (2×) Azathioprine</td>
</tr>
<tr>
<td>33–50%</td>
<td>3 (14)</td>
<td></td>
</tr>
<tr>
<td>>50%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pseudocysts</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>22 (100)</td>
<td></td>
</tr>
<tr>
<td>Acute respiratory failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO₂ 60-70 mm Hg</td>
<td>20 (91)</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>PO₂ <60 mm Hg</td>
<td>1 (5)</td>
<td></td>
</tr>
<tr>
<td>Artificial ventilation</td>
<td>1 (5)</td>
<td></td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Serum creatinine <1-2 mg/dl</td>
<td>17 (77)</td>
<td></td>
</tr>
<tr>
<td>Serum creatinine >1-2 mg/dl</td>
<td>4 (18)*</td>
<td></td>
</tr>
<tr>
<td>Dialysis</td>
<td>1 (5)*</td>
<td></td>
</tr>
<tr>
<td>Fatal outcome</td>
<td>2 (9)</td>
<td></td>
</tr>
</tbody>
</table>

*One patient with chronic renal failure was excluded.

Discussion

Our data show that drug induced acute pancreatitis occurs rarely in clinical practice and usually takes a benign course.

It may be argued, however, that the retrospective design of our study is a drawback and that in a prospective trial the frequency would have been higher. A prospective trial would mean that all patients receiving drugs definitely or probably associated with acute pancreatitis would have been screened for possible development of acute pancreatitis. Such a study is not easy for several reasons. The number of drugs possibly inducing acute pancreatitis is large5, time intervals between first application of any one drug and development of acute pancreatitis differ; and screening procedures for drug induced pancreatitis such as enzyme measurement7 and ultrasound examination8 may be ineffective.

The low incidence of drug induced acute pancreatitis in our study possibly reflects the normal clinical situation. A higher incidence rate has been found among patients with diseases especially associated with acute pancreatitis, such as inflammatory bowel disease9,10 and AIDS.11–16 In inflammatory bowel disease, Haber et al10 saw acute pancreatitis in 13 (3-3%) of 400 patients treated with 6-mercaptopurine, and Sturdevant et al17 in six (5-3%) of 113 patients treated with azathioprine. In patients with AIDS treated with 2,3'-ddi, the incidence rate varied from 7-4% (seven of 95 patients),14 15-9% (seven of 44 patients)15 to 23-5% (12 of 51 patients).18 It should be noted that in this study drug induced acute pancreatitis was only reported in adults and that in paediatric patients the incidence of asparaginase, corticosteroid, or valproic acid induced acute pancreatitis, or all three, may be more frequent.3–6

Severity of drug induced acute pancreatitis was low in our study. This differs from published reports, which show a high incidence of fatal outcome at least from azathioprine,17 19–26 ddI,11–16 18 27 frusenide,28–34 and hydrochlorothiazide.2 35 36 However, such a high incidence probably does not reflect clinical routine (Table III). Most studies on drug induced acute pancreatitis are case reports that are meant to serve as a warning or signpost for other clinicians. This explains why there are more reports on severe than mild cases.

Furthermore, all fatal cases after an intake of azathioprine occurred after renal transplantation, and all ddI induced cases coincided with AIDS, both underlying diseases being not infrequently associated with acute pancreatitis. Of the three patients with fatal frusenide pancreatitis, one had a myocardial infarction and the other a cardiac problem, in addition,30 and the third patient was an alcoholic with pancreatic calcifications, a sign of chronic pancreatitis, who died of renal failure in a diabetic coma.31 Three of the five fatal hydrochlorothiazide2 35 cases were treated at a time when modern intensive treatment of acute pancreatitis was unknown.

In accordance with our findings, there are no fatal cases of acute pancreatitis in published reports following mesalazine/sulfasalazine,37–52 oestrogens,53 54 and rifampicin.55

Despite the low incidence and the moderate severity of drug induced acute pancreatitis, all patients with acute pancreatitis of unknown aetiology should be carefully questioned on drugs possibly responsible for the induction of the disease. In positive cases, the drug held responsible should be omitted to reduce the possibility of further episodes of acute pancreatitis.

The authors give their thanks to all contributors to the study and a complete list is available from the authors.

Drug induced acute pancreatitis: incidence and severity

53 Glucke CJ, Lang J, Hamer T, Tracy C. Severe hypertriglycerideremia and pancreatitis when estrogen replacement therapy is given to hypertriglycerideric women. J Lab Clin Med 1994; 123: 59-64.
