Intestinal permeability

EDITOR.—We read with interest the paper by Dr Oriishi and colleagues (Gut 1995; 36: 891–6) investigating intestinal permeability and the immune response to enteric bacterial antigens in patients with inflammatory bowel disease. Their finding of an increased systemic concentration of antibodies to lipid A in patients with ulcerative colitis 1 is an increase in the systemic concentration of IgG to endotoxin core/lipid A in patients with Crohn’s disease but not in those with ulcerative colitis. 2 Systemic IgM concentration to endotoxin core/lipid A is not increased in either disease. With regard to IgA, we similarly found that the plasma concentration of IgA to the endotoxin core was increased (though not significantly) in patients with Crohn’s disease (107.3±20.5 median units) and ulcerative colitis (93.0±24.2) in comparison with healthy controls (61.3±15.7). 3 We are unable, as yet, to explain these differences. The study by Dr Oriishi and colleagues 4 provides interesting food for thought concerning treatment for impaired gut barrier function. Lactulose has been shown to eliminate systemic endotoxaemia in a hapten induced rat model of colitis 5 and has been suggested as treatment for patients with inflammatory bowel disease. 6,7 The mechanism of the anti-endotoxin action of lactulose is not clear, as lactulose treatment did not have any significant effect on the faecal count of Gram negative bacteria in patients with colitis. 8 The study by Dr Oriishi and colleagues 4 provides additional evidence that lactulose is an effective treatment for inflammatory bowel disease.

Reply

EDITOR.—We thank Mr Keith Gardiner and his colleagues for their comments.

We are aware of the anti-endotoxin action of lactulose. In our study, however, we used lactulose as a marker of intestinal permeability. Anti-lipid A antibody concentrations were not influenced by lactulose with an antiendotoxin action, because anti-lipid A antibody concentrations were measured just before lactulose administration. Lactulose may be useful in both evaluation of disease activity and treatment in diseases with an increasing intestinal permeability and endotoxaemia, such as inflammatory bowel disease, alcoholics, and in the inactivation phase of Crohn’s disease, the continuous administration of lactulose may be interesting. We look forward to further study on this subject.

T ORISHI

Department of Medicine,
Kurume University School,
67 Aushi-machi, Kurume,
Fukuoka 830, Japan

Hydatid disease

EDITOR.—We read with interest the leading article by Dr D L Morris (Gut 1994; 35: 1517–8). We agree with the points concerning treatment of the hydatid disease, however, we are in disagreement with Dr Morris’ statement ‘there are two forms of echinococcus that affect the liver of humans, E granulosus and E multilocularis’. 9,10

Rausch and Bernstein 11 in 1972 described a new species of echinococcus named E vogeli. 12 Furthermore E vogeli was found to be the aetiological agent of the hydatid disease in several patients from Colombia, Venezuela, Equador, and Panama, most of them showing hepatic involvement by the disease. 13 More recently, we had the opportunity to study nine patients with hydatid disease, seven of them from the Brazilian Amazon region; eight of nine showed extensive involvement of the liver. 14 Another study of six additional patients from the state of Acre (Amazon region) showed severe involvement of the liver (Meneghelli et al, unpublished data). All of these patients showed pathological findings that allowed us to establish the diagnosis of echinococcus multilocularis. Subsequently new cases of this neotropical hydatidosis have been detected in Brazil by Ferreira et al 15 and by D’Alessandro et al 16 (unpublished data). It seems that the disease has an extensive distribution in South America, mainly in the Amazon region. All patients we studied had extensive involvement of the liver making a surgical approach impossible. We found that albendazole is effective for the treatment of the disease. 16 Thus we consider that we have enough evidence to say that there are at least three species of echinococcus that affect the liver of humans: E granulosus, E multilocularis, and E vogeli. Moreover there is a possibility of further species, including E oligarthrus, which may also cause hepatic disease in humans.

G R BARCLAY

Department of Medicine,
Faculty of Medicine of Ribeirao Preto,
University of Sao Paulo,
CEP 14904-900,
Ribeirao Preto, Sao Paulo, Brazil

Gastric mucus viscosity and Helicobacter pylori

EDITOR.—The article in Gut by Markesich et al reports that H pylori infection does not cause reduction in the viscosity of human gastric mucus gel (Gut 1995; 36: 527–9). The findings contradict the results of other studies. 1,2,3,4 and misquote the source of materials with which the work was carried out. 5 Contrary to the authors’ assumption, we never used commercially obtained mucin and the work included human gastric mucus, as well as its purified mucin. 6,7 Furthermore, our assays of H pylori enzymatic activities were carried out with enzyme enriched proteins fraction under well controlled conditions. These studies showed that H pylori through its mucolytic enzyme activities is capable of exerting a detrimental effect on gastric mucus gel viscosity. 8

The viscosity data presented by Markesich et al were obtained directly on gastric juice samples from patients with and without H pylori infection, and do not provide any information on the mucolytic enzyme activities of the bacterium, nor for that matter on...