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Figure 5: Cytotoxic bioassay of TNF activity in supernatants (diluted 1/10) from various
gluten stimulated (48 hours) T cell clones (M) as shown (lower panel) in relation to APC
alone, clonal control without gluten (LI), and reference values obtained with 0-100 U/ml
ofrhTNF a (E) (upper panel). Results presented as mean reduction ofOD at 550 nm of
triplicates tested in the same experiment (repeated in a reproducible manner at least twice).
Insert shows autoradiogram of slot blot hybridisation results with antisense DNA probe for
TNF a mRNA from two gluten stimulated (2-18 hours) T cell clones as shown, compared
with unstimulated control (0 hours).

negative TCC also showed very low amounts
of IL 4 mRNA by slot blot analysis (Fig 7).
Semi-quantitative PCR showed IL 4 mRNA in
one of the DQ2 restricted TCC (clone 4.81),
after four hours of gluten stimulation, although
the sister clone 4.32 was negative in ELISA
(Fig 4, Table IV). All of the three tested DQ8
restricted TCC secreted substantial amounts
of IL 4 (Table IV), and two of them (clones
2.27 and 2.37) showed upregulation of IL 4
mRNA after four hours of gluten stimulation
as detected by semi-quantitative PCR (Fig 4).

Expression and secretion ofIL 5
Only one of nine tested DQ2 restricted TCC
secreted small amounts of IL 5 detectable by
bioassay (diluted 1/2) after gluten stimulation
(Table IV), and two clones tested for IL 5
mRNA (clones 4.81 and 3 25) showed very
low levels of message by semi-quantitative
PCR (Fig 4). Conversely, the DQ8 restricted
TCC were consistently positive for IL 5 activ-
ity in bioassay (Table IV). Clone 2.27 showed
no upregulation of IL 5 mRNA, although this
clone secreted substantial amounts of IL 5
when tested by bioassay (Table IV). Clone
2.37, on the other hand, expressed IL 5 mRNA
in both unstimulated and stimulated cells (Fig
4).

Expression and secretion ofIL 6
Only four of nine tested DQ2 restricted TCC
secreted IL 6 detectable by bioassay (diluted
1/5) after gluten stimulation, and the amounts

were comparatively small (20-400 U/ml),
especially without addition of rhIL 2 (Fig 8,
Table IV). The five DQ8 restricted TCC all
secreted substantial amounts (>500 U/ml) of
IL 6, and two clones (clones 2.27 and 2.37)
expressed IL 6 mRNA as shown by semi-
quantitative PCR (Fig 4). Considerably less IL
6 mRNA was detected in clone 4.81, and clone
3.25 was negative in agreement with the result
obtained by bioassay (Table IV).

Expression and secretion ofIL 10
After gluten stimulation two of four tested
DQ2 restricted TCC secreted small amount of
IL 10 as detected in undiluted supematants by
ELISA, whereas the two others were negative.
Conversely, two of three tested DQ8 restricted
TCC secreted substantial amounts of IL 10
(Fig 9, Table IV). Semi-quantitative PCR per-
formed on four TCC showed IL 10 mRNA in
all of them after gluten stimulation for four to
eight hours, and in one unstimulated clone as
well.

Discussion
This study describes for the first time cytokine
profiles of antigen stimulated mucosal TCC
obtained from the human gut. We used as a
model system gluten responsive CD4+ T cells
isolated from in vitro gluten challenge jejunal
mucosa of treated coeliac patients. 12 TCC
from two of the patients were restricted by
HLA-DQ2,20 those from a third patient by
HLA-DQ8.21 Large amounts of IFN y were
found in the supematants from all these TCC
after stimulation with gluten, and some of
them secreted in addition variable amounts of
TNF, TGF P, IL 4, IL 5, IL 6, and IL 10. No
cytokine secretion, except for TGF P, could be
detected in the absence of gluten stimulation,
and the Epstein-Barr virus transformed B cells
used as APC were likewise negative.
The major cytokine of activated intestinal

CD4+ T cells thus seems to be IFN y if our
results were valid for the in situ situation. In an
immunohistochemical study of formalin fixed
intestinal biopsy specimens of coeliac disease
patients, a polyclonal antibody reagent was
used to show the presence of IFN y in a con-
siderable proportion of both intraepithelial and
lamina propria lymphocytes.33 Those results
did not distinguish between receptor bound or
locally produced IFN y, however, and were in
striking contrast with a subsequent in situ
hybridisation study of IFN y mRNA in jejunal
mucosa34; numerous positive lamina propria
cells (but no intraepithelial lymphocytes) were
found in active coeliac disease but only a few
scattered ones in normal mucosa. This last
finding was in agreement with our results
showing IFN y production by mucosal gluten
specific TCC only after stimulation. Also, it
accorded well with a report on abundant secre-
tion (plaque assay) of IFN y by lamina propria
cells dispersed from Crohn's disease lesions
but hardly by counterparts from normal
intestinal mucosa.35

Heterogeneity among CD4+ T cells in terms
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Figure 6: Cytotoxic bioassay of TGF ,3 activity in supernatants (diluted 1/2) from van
gluten stimulated (48 hours) T cell clones (U) as shown (lower panel) in relation to A
alone, clonal control without gluten (L), and reference values obtained with 0-5000
pg/ml ofrhTGFT 3 (E) (upper panel). Results presented as mean 3H-thymidine
incorporation (CPM) in triplicates tested in the same experiment (repeated in a
reproducible manner at least twice).
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Figure 7: ELISA measurements ofIL 4 in supernatants (undiluted) from various glute
stimulated (48 hours) T cell clones ( ) as shown (lower panel) in relation to clonal
control without gluten (LI), and reference values obtained with 0-2000 pg/ml of rhIL
( ) (upper panel). Results are presented as mean OD at 492 nm of duplicates tested i
the same experiment. Insert shows autoradiogram after slot blot hybridisation with antis
DNA probe for IL 4 mRNA from two gluten stimulated (2-18 hours) T cell clones as

shown, compared with unstimulated control (0 hours).

of cytokine secretion (and thereby functic
properties) is well reported in the mouse.-

Thus, most murine CD4+ TCC can

categorised in two subsets: Thl cells 1
secrete mainly IFN y and IL 2 mediate dela
type hypersensitivity, whereas Th2 cells 1

secrete mainly IL 4 and IL 5 provide supe
help for humoral immunity.38 There is sc

support for the notion that Thl and Th2 cells
are the progeny of ThO cells, which can pro-
duce various cytokines.38 Comparable T cell
subsets have recently been defined in humans,
although the expression of other cytokines
such as IL 2, IL 6, IL 10, and IL 13 may
be less restricted than in mice.39 The stimula-
tory antigen clearly plays a major part in
determining the cytokine pattern of reactive T
cells. Thus, human TCC obtained from
peripheral blood of an atopic patient show a
Thi-like profile in response to mycobacteria
but a Th2-like profile in response to allergens.39
The TCC with reactivity against M tuberculosis
included as a control in our study fit into this
pattern (Table IV).

In view of the prominent production of IFN
ry as a marker for Thl, and IL 4 together with
IL 5 as a marker for Th2, our results suggested
that the most frequent cytokine pattern among
the gluten specific mucosal TCC was a ThO-
like profile. Some of the TCC showed a dis-

50 tinct Thl profile, however, with prominent
IFN y but no IL 4 or IL 5 production. It has

ious been claimed that especially IFN y and IL 4
[PC might be critical growth factors in the differen-

tiation ofT cell subsets, IFN y augmenting the
development of Thl cells and IL 4 promoting
Th2 cells.39 The TCC used in our study were
propagated with PHA and IL 2; it could not
be excluded that this expansion procedure

* influenced the cytokine profiles obtained.
However, several studies based on the same
cloning procedure have reported the genera-
tion of both Thl and Th2 human TCC.40 41
The absence of IL 2 from the supernatants

of our TCC after 48 hours stimulation was
somewhat surprising. Low values were often
found after six hours, however, and
PCR showed IL 2 mRNA in three of four TCC
tested after four to eight hours of gluten
stimulation. The TCC showed strong pro-
liferative response to gluten and incorporated
3H-thymidine (Table IV). One possible
explanation for the lack of IL 2 in the super-
natants could therefore be consumption of

_j
this autocrine growth factor by the TCC.
Alternatively, the rhIL 2 added during propa-
gation of the TCC might have downregulated
their own production of this cytokine, or the
sensitivity of the bioassay could be insufficient.
Interestingly, oral immunisation with entero-

2.5 toxigenic Escherichia coli vaccine also induced
T cells (presumably gut derived) with promi-
nent IFN y but no detectable IL 2 secretion.42

n Differences in the cytokine profiles were
4 seen in the two sister clones 4.32 and 4.81,
in although they carried the same TcRa/d genes;
gense such discrepancies might be explained by

small variations in growth conditions and also
by the fact that our TCC were stimulated in a
physiological manner, resulting in some unpre-

mnal dictable variability. Similarly, in a study
36 37 performed on TCC derived from a TcRod/
be transgenic mouse there was significant hetero-

that geneity of cytokine expression within each of
Lyed the cloned Thi, Th2, and ThO populations.43
that Coeliac disease shows a strong HLA
rior class II association, predominantly with
:me a DQ(G1*0501,41*0201) heterodimer.3 4
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Figure 8. Proliferative bioassay ofIL 6 activity in supernatants (diluted 1/5) from varioi
gluten stimulated (48 hours) T cell clones ( ) as shown (lower panel) in relation to AP
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Results are presented as mean 3H-thymidine incorporation (CPM) in triplicates tested in
the same experiment (repeated in a reproducible manner at least twice).
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Figure 9: ELISA measurement ofIL 10 in supernatants (undiluted) from various gluten
stimulated (48 hours) T cell clones (E) as shown (lower panel) in relation to clonal
control without gluten (LI), and reference values obtained with 0-1530 pg/ml of rhIL 1(
( U) (upper panel). Results are presented as mean OD at 492 nm of duplicates tested in
the same experiment.

There is accumulating evidence that activated
CD4+ T cells in jejunal mucosa play an
important immunopathological part in the
development of the coeliac lesion.'1 12 44
Because DQ molecules are abundantly
expressed by subepithelial APC and hardly by
the gut epithelium,2 45 gluten peptides are
most probably primarily presented to T cells
within the lamina propria, although some DR
mediated antigen presentation might occur in
the epithelium. It is noteworthy in this con-

text that when jejunal mucosal specimens
from treated coeliac patients are challenged
with gluten in vitro, lamina propria CD4+ T
cells but not intraepithelial lymphocytes
express the activation marker CD25.12 The
gluten reactive TCC used in this study are

therefore most probably derived from ex vivo
stimulated lamina propria T cells.20-22

Significantly increased expression of HIA-
DR was seen on HT-29.E10 cells after
exposure to supernatants from gluten stimu-
lated TCC. This agreed with the fact that the
active coeliac lesion shows increased epithelial
expression of class II molecules in a differential
fashion - that is, DR>DP>DQ,45 and rhIFN
y can differentially induce these molecules on
HT-29.E10 cells.15 Thus, the aberrant epi-
thelial class II expression seen in the coeliac
lesion is most probably explained mainly by
the release of IFN y from activated mucosal T
cells. However, after class II induction, an

50 enhancing effect on the expression may be
provided by TNF ox,17 as also suggested by in
vitro tests on cultured intestinal biopsy

'C specimens.46 We observed substantial death of
HT-29.E10 cells after stimulation with TCC
supernatants at dilutions lower than 1/20; and
it has been reported that IFN y, both alone
and in combination with TNF a, is cytotoxic
to epithelial cells.47 Together, therefore, these
results suggested that gluten induced IFN y

secretion in the lamina propria might con-
tribute to mucosal damage in coeliac disease.
It is interesting in this context that super-

natants obtained from the same stimulated
gluten specific TCC produced significant
reduction in enterocyte height in biopsy
specimens from healthy subjects, and that this
effect could be blocked by antibodies to IFN
_ .48 Moreover, in a murine graft versus host

reaction model such antibodies were shown to
prevent immunologically mediated villous
atrophy, crypt cell hyperplasia, and intestinal
damage.49
The active coeliac lesion also shows

increased epithelial expression of secretory
component,50 and IFN y, TNF a as well as IL
4 can upregulate this polymeric immunoglobu-
lin receptor on HT-29.E10 cells.1618 51 52
Buturate, a normal fermentation product in
the large bowel, considerably enhances this
effect of the two former cytokines.52
Interestingly, the supernatants of our gluten
stimulated TCC were directly shown to
upregulate secretory component. Enhanced
expression of the polymeric immunoglobulin

0 receptor in vivo would promote the external
transport of dimeric IgA and pentameric IgM
antibodies, which indeed is known to be the
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case in coeliac disease; mucosal overproduc-
tion of IgM and luminal delivery of secretory
IgM antibodies to gluten do in fact seem to be
an early marker of disease activation.53
Perhaps complement activating IgM anti-
bodies bound to secretory component baso-
laterally on the jejunal epithelium exert an
immunological attack.54 Supernatants from
our TCC were also found to contain IL 10 and
TGF P after gluten stimulation, and TGF P
was secreted by unstimulated cells as well.
This last cytokine, particularly in cooperation
with IL 10, may enhance IgA secretion by
activated human B cells, probably as a conse-
quence of class switching.55

In conclusion, mucosal exposure to gluten
in genetically predisposed subjects will induce
hyperactivation of CD4+ lamina propria T
cells, which through their Thl and ThO
cytokine repertoire most probably contribute
not only to the intensified and unbalanced
local B cell response,53 but also to crypt hyper-
plasia,1444 enhanced epithelial expression of
secretory component (polymeric immuno-
globulin receptor) and HLA class II,50
increased epithelial permeability,l3 and epi-
thelial damage.'447 48 Mucosal T cell activa-
tion in an HLA-DQ restricted fashion thus
seems to play a central part in the pathogenesis
of coeliac disease.
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