p53 Expression in ulcerative colitis: a longitudinal study

M Ilyas, I C Talbot

Abstract

p53 Mutation is a late event in the development of sporadic colorectal carcinoma (CRC). The timing of p53 mutations in the development of ulcerative colitis associated colorectal carcinoma (UCACRC) is, however, less certain and some reports suggest that it may be a relatively early event. This study sought to establish the timing of p53 mutations in neoplasia arising in ulcerative colitis. Blocks of 10 resected colorectal specimens from patients who had had a biopsy positive for dysplasia at least one year prior to resection were retrieved from the archives of St Mark’s Hospital. Immunohistochemistry using the monoclonal antibody DO-7, specific for both mutant and wild type p53, was performed on sections from both the resection specimens and dysplastic biopsy specimens. Seven of the 10 resection specimens were positive for p53. Two of these seven specimens showed p53 overexpression in specimens taken two years before the development of carcinoma or high grade dysplasia. Five of the seven specimens were negative for p53 overexpression between one and four years prior to resection. These results suggest that p53 overexpression is usually a late event in the development of UCACRCs.

Keywords: p53, dysplasia–carcinoma sequence, UCACRC.

p53 is a DNA binding protein that participates in both DNA repair and induction of apoptosis.1 2 Mutation of the p53 gene is probably the single most common mutation found in malignant tumours in humans.3 This mutation is generally deemed a late event in most carcinogenic pathways. It occurs as one of the final steps in the adenoma–carcinoma sequence in sporadic colorectal carcinoma (CRC).4 5 and participates in high grade transformation in malignant lymphomas.6 In ulcerative colitis the picture is rather less clear. Most reports show that it is found far more frequently in high grade dysplasia than low grade dysplasia suggesting that p53 mutation is a late event.7–10 Some reports, however, suggest that it may be a relatively early event11 and in one report mutations have been detected in up to 30% of biopsy specimens from non-dysplastic epithelium.12 Another report from the same group has shown loss of heterozygosity, an event that usually occurs later than mutation, in specimens negative and indefinite for dysplasia.13 We aimed to identify the timing of p53 mutations in a longitudinal retrospective study.

Selection criteria

Specimens were selected from a series previously described in a study by Connell et al in which all samples positive for dysplasia were reviewed.13 From those patients in which the specimens were still positive for dysplasia after review, inclusion into this study was accepted only if at least 12 months had elapsed between the dysplastic biopsy and the resection of the bowel. After application of these criteria only 10 cases were found to be suitable.

Immunohistochemistry

Standard immunohistochemistry was performed by the ABC method using a Vectastain ABC kit (Vector Laboratories). Fresh 4 μm thick sections were cut from the dysplastic specimens and sites anatomically corresponding with these samples in the resection specimen. In addition any other interesting sites from the specimens were also examined. Sections were dewaxed in xylene and rehydrated through graded alcohols. Endogenous peroxidase activity was blocked by incubating for 20 minutes in 0.5% hydrogen peroxide in methanol. Antigen retrieval was by boiling the sections for two minutes in an aluminium pressure cooker at 15 psi in sodium citrate buffer (0.01 M, pH 6–0). After preincubating for 30 minutes in normal horse serum, sections were incubated overnight at room temperature with the mouse monoclonal antibody DO-7 (Novocastra) at a dilution of 1:100. This antibody recognises a fixation resistant epitope of both mutant and wild type p53. Bound antibody was detected using the Vectastain ABC kit in accordance with the manufacturer’s instructions with diaminobenzidine (Sigma) as the chromogen. Sections were then counterstained with haematoxylin and reviewed blind. Epithelial staining was scored in a semi-quantitative manner using the following scale: 0=0% positive cells; + = 10–25%; ++ = 25–50%; +++ = >50%.

Results

The Table shows the results of the positive cases. Only sections in which over 10% of epithelial cells showed clear staining were regarded as positive. In some areas there was pale background staining of normal epithelial nuclei. Nuclei were only counted as positive if
Results of the p53 immunostaining of the dysplastic biopsy and resection specimens from the seven specimens that were positive for p53 in the resection. 0%<10% positive cells; + = 10-25%; ++ = 25-50%; +++ = >50%

<table>
<thead>
<tr>
<th>Case</th>
<th>Biopsy p53 (histology)</th>
<th>Resection p53 (outcome)</th>
<th>Time: biopsy to resection (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 (LGD)</td>
<td>+ (HGD)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>++ (LGD)</td>
<td>+++ (Ca)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>++ (HGD)</td>
<td>++ (HGD)</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0 (LGD)</td>
<td>+ (LGD)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0 (LGD)</td>
<td>++ (Ca)</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0 (HGD)</td>
<td>++ (HGD)</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0 (HGD)</td>
<td>+++ (Ca)</td>
<td>2</td>
</tr>
</tbody>
</table>

LGD = low grade dysplasia, HGD = high grade dysplasia, Ca = cancer.

both pathologists agreed that there was significantly greater staining than that seen in the background. From the 10 cases, seven were positive for p53 staining in the mucosa of the resection specimen. Of these seven, two were positive for p53 in the earlier dysplastic biopsy specimens (Figs 1 and 2). In both of these cases the specimens were taken two years prior to resection. One of these patients developed a mucinous carcinoma while the other showed high grade dysplasia in the resection. The remaining five p53 positive specimens showed no evidence of p53 overexpression in the specimens and there was no patient in whom the biopsy result was positive but the resection specimen was negative. These results show that p53 overexpression can occur in low grade dysplasia at least two years prior to malignant transformation or development of high grade dysplasia. In most cases, however, the overexpression of p53 was a late event.

Discussion

The increased risk of development of CRC in ulcerative colitis is well reported. As ulcerative colitis associated colorectal carcinomas (UCACRCs) often arise from flat mucosa showing cellular atypia without the polypoid architectural changes seen in adenomas, these tumours provide an alternative model for the study of carcinogenesis – that is, a ‘dysplasia-carcinoma’ sequence in contrast to the ‘adenoma-carcinoma’ sequence. Similar genetic changes have been seen in UCACRCs as in sporadic CRCs and...
the putative ‘dysplasia–carcinoma’ pathway may share many features with the ‘adenoma–
carcinoma’ pathway.

Most p53 studies in ulcerative colitis have shown that the frequency of immunohisto-
chemical overexpression and point mutation increases with the severity of dysplasia and this
suggests that it is probably a late event.1–10 Our aim was to investigate this further in a longitudi-
nal study in which early biopsy specimens showing unequivocal dysplasia were investi-
gated for p53 overexpression. Our selection criteria required that there be at least a 12
month interval between the biopsy and the resection. Only 10 cases fitted our criteria and,
of these, seven were p53 positive. Two of these seven cases showed p53 overexpression two
years prior to resection while the remaining five showed no such early overexpression. Our
findings are significant in that they show that p53 overexpression is probably a late event in
the development of UCACRCs and are in agreement with other studies. In this respect,
the carcinogenetic pathway in UCACRCs is probably similar to that of sporadic CRCs.

One important function of p53 lies in its role in the induction of apoptosis.2 The reduction
in the ability to undergo apoptosis may lead to
immortalisation of cells. This would tend to
increase the accrual of mutations, which may eventually be sufficient for malignant transforma-
tion (as in the Epstein-Barr virus induced
immortalisation of lymphocytes).1415 In such a
model the loss of ability to undergo apoptosis is an early event. Alternatively, if the ‘transform-
ing’ mutations have already occurred then loss
of ability to undergo apoptosis will allow these
ordinarily lethal mutations to survive. In this
model loss of apoptosis inducing processes
occurs as a late event. Our findings suggest
that p53 is a late mutation in the development of
UCACRCs and suggest that in terms of
disease biology, loss of apoptosis may be a late
event.

This study is, however, limited by too few
cases to draw any important conclusions.
None the less, only in a truly longitudinal study
such as this can the natural history of a disease be followed. Another limitation is the use of
immunohistochemical overexpression as an indication of probable mutation. We may thus
have missed some non-sense mutations resulting
in truncated protein. In addition, given the high
degree of sensitivity of antigen retrieval
methods, we may have detected overexpres-
sion of wild type protein – that is, appropriate
expression of non-mutant p53 – in an attempt
to induce apoptosis in neoplastic cells. Unequivocal overexpression of p53 protein in
over 5% of tumour cells has been shown to be very highly correlated with p53 point
mutations in colorectal carcinomas.16 We set
rigid criteria for the definition of positive
staining to prevent false positive results – only
when both pathologists were in agreement
were cells accepted as positive. For complete-
ness, however, direct genetic analysis of the
p53 gene in these cases is required.

In summary, we conducted a longitudinal
study in an attempt to identify the timing of
p53 mutations in ulcerative colitis. Our results
suggest that this is probably a late event in
the ‘dysplasia–carcinoma’ pathway. In this we
are in agreement with other workers and this
suggests that a ‘dysplasia–carcinoma’ sequence
has some features in common with the
‘adenoma–carcinoma’ sequence.

1 Lane DP. Cancer. p53, guardian of the genome. Nature
2 Hinds PW, Weinberg RA. Tumor suppressor genes.
3 Hall PA, Lane DP. p53 in tumour pathology: can we trust
immunohistochemistry? – Revisited! J Pathol 1994; 172:
1–4.
4 Fearon ER, Vogelstein B. A genetic model for colorectal
5 Baker SJ, Preisinger AC, Jessup JM, Paraskeva C,
in combination with 17p allelic deletions as late events in
6 Sender CA, Yano T, Clark HM, Harris C, Longo DL, Jaffe
ES, et al. p53 Mutation is associated with progression in
7 Harpur N, Peck AL, Yin J, Fiel I, Hontanosas M, Tong TR,
et al. p53 protein expression in ulcerotic colitis-associated
colorectal dysplasia and carcinoma. Hum Pathol 1994; 25:
1069–74.
8 Burmer GC, Rabinovich PS, Haggitt RC, Crispin DA,
Brentnall TA, Kalli VR, et al. Neoplastic progression in
ulcerative colitis: histology, DNA content, and loss of
9 Chaubert P, Benshar J, Saraga E, Costa J. K-ras mutations
and p53 alterations in neoplastic and nonneoplastic
lesions associated with longstanding ulcerative colitis.
10 Taylor HW, Boyle M, Smith SC, Bustin S, Williams NS.
Expression of p53 in colorectal cancer and dysplasia
11 Yin J, Harpur N, Tong Y, Huang Y, Laurin J, Greenwald
BD, et al. p53 Point mutations in dysplastic and cancerous
ulcerative colitis lesions. Gastroenterology 1993; 104:
1633–9.
12 Brentnall TA, Crispin DA, Rabinovich PS, Haggitt RC,
Rubin CE, Stevens AC, et al. Mutations in the p53 gene:
an early marker of neoplastic progression in ulcerative
13 Connell WR, Lennard-Jones JE, Williams CB, Talbot IC,
Price AB, Wilkinson KH. Factors affecting the outcome
of endoscopic surveillance for cancer in ulcerative colitis.
Gastroenterology 1994; 107: 934–44.
14 Epstein AM, Achong BG. The Epstein Barr virus. Berlin:
15 Niedobitek G, Herbst H. Epstein-Barr virus-associated
16 Costa A, Marsacca R, Valentinis B, Savarino M, Faranda A,
Silvestrini R, et al. p53 gene point mutations in relation to
p53 nuclear protein accumulation in colorectal cancer.
J Pathol 1995; 176: 45–53.