Pancreatitis associated protein as an early marker of acute pancreatitis

E Kemppainen, J Sand, P Puolakkainen, S Laine, J Hedström, V Sainio, R Haapiainen, I Nordback

Abstract

Background—Measuring serum pancreatitis associated protein (PAP) in acute pancreatitis has proved valuable in monitoring the course of the disease and the recovery of the patient.

Aims—The aim was to analyse the utility of PAP on admission as a diagnostic and prognostic marker of acute pancreatitis.

Patients—Values of PAP were prospectively analysed in 80 healthy volunteers, 164 patients with abdominal pain but without pancreatitis, 109 patients with mild acute pancreatitis, and 38 patients with severe acute pancreatitis.

Methods—The diagnosis of acute pancreatitis was verified with clinical, laboratory, radiological, and in some cases findings at operation or necropsy.

Results—Mean (95% confidence intervals) serum PAP values were 27 (24 to 29) µg/l in healthy volunteers, 78 (59 to 96) µg/l in patients with abdominal pain, 191 (134 to 247) µg/l in patients with mild acute pancreatitis, and 599 (284 to 914) µg/l in patients with severe acute pancreatitis.

Differences between the groups were significant (p<0.04–0.01). Despite the differences in means, the ranges overlapped between the groups. The sensitivity of PAP on admission to detect acute pancreatitis was 38%–53% and the respective specificity 89%–77% depending on the cut off level. The sensitivity of PAP to detect severe acute pancreatitis was 45%–68% and the specificity 74%–59% depending on the cut off level.

Conclusions—Admission PAP did not distinguish severe from mild acute pancreatitis better than C reactive protein. Measurement of PAP does not give appreciable diagnostic advantages in the early phase of acute pancreatitis.

Keywords: pancreatitis associated protein, acute pancreatitis, marker, early diagnosis.

Pancreatitis associated protein (PAP) is a recently discovered pancreatic exocrine secretory protein that is not detectable in pancreatic juice in normal conditions, but for which secretion is strongly induced in acute pancreatitis. The primary structure of PAP disclosed a significant similarity with reg/lithostatine, another pancreatic protein and has considerable homology with the carboxyl terminal region of C type lectins, which can explain its capacity to aggregate bacteria. It can be characterised as a pancreatic acute phase protein, probably not so important in the pathogenesis of acute pancreatitis, but representing endogenous defence mechanisms. Although PAP is secreted in zymogen granules from the acinar cells into the pancreatic juice, it also leaks from the pancreas into serum in acute pancreatitis. Raised serum concentrations of PAP have been detected after long-term alcohol consumption, and PAP has been considered as a probable marker of subclinical pancreatic injury.

In a recent study, the monitoring of serum PAP in patients with acute pancreatitis provided a good method for the dynamic assessment of the severity of the disease and the recovery of the patient.

Methods

The study was prospectively conducted from October 1992 to January 1995 in the University Central Hospitals of Tampere and Helsinki in Finland. It was designed in three steps: (1) to establish the reference value of PAP in healthy subjects, (2) to establish the reference value in populations having abdominal pain from causes other than pancreatitis, and (3) to analyse the clinical utility of serum PAP in the early diagnosis of acute pancreatitis of different aetiologies.

For step 1 serum samples were collected from 80 healthy adult volunteers (Table I), and stored at −70°C for later assays of PAP, C reactive protein, and serum amylase to create a local reference material for the study.

For step 2, serum samples were collected from 164 patients admitted to the emergency departments of Tampere and Helsinki University Central Hospitals with various acute abdominal problems (Tables I and II).

Pancreatitis was excluded in these patients on clinical, laboratory, radiological, and in 13 cases, findings at endoscopy or operation.

For step 3, serum samples were collected from 147 patients with acute pancreatitis on
admission to hospital, during the diagnostic procedures of the emergency departments of the two participating hospitals.

The diagnosis of acute pancreatitis was based on a history of prolonged upper abdominal pain with one or more of the following clinical features: vomiting, fever, tachycardia, abdominal tenderness, rebound, distension, bowel paralysis, Grey Turner’s sign, or Cullen’s sign. Increased amylase activity was considered to suggest acute pancreatitis, but was not used on its own as a diagnostic criterion. Amylase thresholds were over 900 IU/l (normal range <300 IU/l) in serum and over 6000 IU/l (normal range <2000 IU/l) in urine. The diagnostic of acute pancreatitis was confirmed with contrast enhanced computed tomography in 69 patients, and in some cases with findings at operation or necropsy.

TABLE III Mean (95% CI) serum PAP concentration, serum amylase activity, and serum C reactive protein concentration on admission

<table>
<thead>
<tr>
<th>PAP (μg/l)</th>
<th>Amylase (IU/l)</th>
<th>CRP (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy subjects</td>
<td>27 (24 to 29)*</td>
<td>206 (186 to 215)</td>
</tr>
<tr>
<td>Abdominal pain reference group</td>
<td>78 (59 to 96)*</td>
<td>211 (165 to 272)</td>
</tr>
<tr>
<td>Severe pancreatitis</td>
<td>599 (284 to 914)*</td>
<td>1581 (70 to 2191)</td>
</tr>
<tr>
<td>All cases of pancreatitis</td>
<td>296 (202 to 390)*</td>
<td>1997 (1617 to 2377)</td>
</tr>
</tbody>
</table>

*Diifferences are significant between all groups in PAP (Mann-Whitney U test).

ASSAY PROCEDURES

Serum amylase activity was measured with an enzymatic colorimetric test, using 2-chloro-4-nitrophenyl-B-D-malto-heptaside (4 mmol/l) as a substrate. The absorbance of the coloured products was measured at 405/660 nm with a Hitachi 717 autoanalyzer. Serum amylase <300 IU/l and urine amylase <2000 IU/l were considered normal. C reactive protein was determined using an immunoturbidimetric method with antiserum and standards from Orion Diagnostica, Finland. The upper reference limit was 10 mg/l.

Concentration of PAP was measured with a new commercial kit (PANCREPAP) for assaying human PAP (Dynabio, La Gaude, France). Its principle is based on a sandwich immunoenzymatic system, in which the samples are bound by specific antibodies. Bound PAP is then recognised by polyclonal anti-PAP antibodies coupled to biotin. After washing, antigen-antibody complexes are detected by an avidin-peroxidase complex and are visualised by the addition of a chromogenic substrate. The intensity of the colour reaction is proportional to the quantity of the PAP bound in the first step and can be measured spectrophotometrically.

STATISTICAL ANALYSIS

Values in each group are given as mean and 95% confidence intervals (95% CIs). A two tailed Mann-Whitney U test was used to calculate the significance of differences between the groups. Differences of p<0.05 were considered significant.

Results

In the 80 healthy volunteers serum PAP concentrations remained low and the individual variation was usually small (Table III), but few showed high or low PAP concentrations (range 0.1–63 μg/l). Serum C reactive protein concentrations and amylase activity remained within the reference range (Table III).

In the 164 patients with acute abdominal pain but without pancreatitis, serum PAP was
Pancreatitis associated protein as an early marker of acute pancreatitis

higher than in the healthy volunteers (Table III). The range of the observations was 4–991 μg/l. Concentration of PAP was a little higher in the 43 patients (Table II) with the reported association with pancreatic damage (in the present cases pancreatitis could not be diagnosed) than in the remaining 121 patients (75 (50–101) μg/l) after 89 (56–124) μg/l, p<0.53). In all the 164 patients C reactive protein concentration but not the amylase activity was higher than in the healthy volunteers (Table III).

In the 147 patients with pancreatitis the PAP on admission was significantly greater than that of healthy volunteers and patients with acute abdominal pain without pancreatitis (Table III). Concentrations of PAP were significantly more increased in severe pancreatitis than in mild pancreatitis (Table III). The range of admission PAP values was wide (15–4076 μg/l). Admission PAP did not differ significantly between the patients with various pancreatitis aetiologies, or between the patients with the first and recurrent acute pancreatitis (data not shown). Also C reactive protein and amylase were increased in the patients with pancreatitis compared with healthy volunteers. Furthermore, C reactive protein differed between patients with mild and severe pancreatitis (Table III).

Table IV presents the sensitivities and specificities at various cut off values of admission PAP and C reactive protein to identify pancreatitis in patients with acute abdominal pain, and the severity of pancreatitis in patients with acute pancreatitis or in patients with acute abdominal pain. In the patients with pancreatitis the mean lapse between the onset of symptoms and the admission to hospital was 31 hours. When studied separately, the 66 patients who were admitted within 24 hours after the onset of symptoms and the 81 patients who were admitted later did not differ in respect to detection of pancreatitis by PAP (sensitivities 45% v 50%, specificities 85% v 89%).

Discussion

Previously the early biochemical diagnosis of pancreatitis and the assessment of the severity of the disease were based either on the measurement of released active digestive enzymes in circulation (as specific to the pancreas as possible), their precursors, or inactive residues released during the activation of the enzymes, or on the measurement of the body inflammation parameters. Amylase activity and C reactive protein concentration have gained wide popularity in clinical practice, largely due to the easy, rapid, and automated methods of measurement. However, these methods are far from perfect in detecting pancreatitis. Neither is specific to pancreatitis. Furthermore, in a patient with pancreatitis amylase activity is of no value in identifying patients with severe pancreatitis. C reactive protein often increases more after the admission, making the admission identification of severe pancreatitis sometimes difficult.

Because PAP is neither a digestive enzyme nor a marker of general body inflammation, it is induced in the pancreas in acute pancreatitis when pancreatic enzyme synthesis is reduced, it is thought to be a pancreatic acute phase protein, and it has been shown to be valuable in monitoring the patients with acute pancreatitis, we studied the value of PAP in the early diagnosis of pancreatitis and the severity of the disease.

The present study showed that the admission PAP was significantly increased in patients with acute pancreatitis compared with healthy volunteers and patients with other causes of acute abdomen. However, although the 95% CIs did not overlap between the study groups, the ranges did. Such overlap resulted in unacceptably low sensitivities and specificities, independent on the cut off level used. Thus, serum PAP measurement on admission to hospital cannot be recommended for the diagnosis of acute pancreatitis.

A low sensitivity of PAP in diagnosing acute pancreatitis was not unexpected; PAP is a protein, of which detection in high concentration in serum requires preceding cellular induction, synthesis, and a leak into the circulation. A previous study showed a three to four day lapse before PAP concentrations increased to hundreds of units (μg/l) in a patient with severe pancreatitis. The unsatisfactory specificity was more expected. Very recently, however, a protein immunoreactively similar to PAP has been found in jejunum and ileum, in Paneth cells, and in a few goblet cells. This may explain why some patients with other causes of acute abdomen also had concentrations of serum PAP greater than the healthy volunteers.

The present study showed that the admission PAP was significantly greater in the patients with severe than in those with mild pancreatitis. When compared with C reactive protein, however, the sensitivities and specificities of PAP were slightly lower. Thus, C reactive protein gives better prognostic information than PAP. The sensitivities and specificities of PAP on admission to distinguish the patients with severe pancreatitis from patients with other causes of acute abdomen were slightly higher than those of C reactive protein. This, however, may be due to the nature of C reactive protein being a non-specific marker of body inflammatory response.

![Table IV: Sensitivities (Sens) and specificities (Spec) of admission PAP and CRP to identify pancreatitis in patients with acute abdominal pain, and the severity of pancreatitis in patients with acute pancreatitis or in patients with acute abdominal pain.](http://gut.bmj.com/) Gut: first published as 10.1136/gut.39.5.675 on 1 November 1996. Downloaded from http://gut.bmj.com/ on September 15, 2023 by guest. Protected by copyright.
In a severely ill patient with acute abdomen, severe acute pancreatitis is one option in the differential diagnosis. C-reactive protein may still be low and amylase activity of a few hundred units does not support or exclude pancreatitis. Then PAP measurement would give important information. However, the sensitivity and specificity of PAP to detect severe pancreatitis was not better than that published from contrast enhanced computed tomography. 15–18

In conclusion, serum PAP measurement on admission to hospital was not found to have satisfactory reliability in the diagnostic evaluation of acute pancreatitis.

This work was supported by grant from the Paulo Foundation, Finland (IN). We thank Dr J-C Dagorn, U 315, INSERM, Marseille, France, for providing the PAP kits.