LETTERS TO THE EDITOR

Reflux oesophagitis and acid exposure

Editor,—The interesting finding by Holloway et al is their pH findings of patients on omeprazole 20 mg compared with 40 mg (Gut 1996; 38: 649–54). There seems to be a paradoxical rise in acid exposure in the face of an increased omeprazole dose. Their findings are not logical and have three possible explanations: firstly, a typographical error in their Table; secondly, unreliable pH recordings and thirdly, a genuine increase in acid exposure with higher doses of omeprazole. The actual numbers are not given and are likely to be small, making statistical significance dubious but the supine acid exposure rises from 24-9% on omeprazole 20 mg to 33-0% on the 40 mg dose. This is likely to represent ‘rebound acid secretion’ at night after the suppressive effects of the morning dose of omeprazole have worn off. This ‘rebound acid secretion’ effect is shown in their study with H2 antagonists, which show higher pretreatment acid exposure. The ‘rebound acid secretion’ phenomenon is clinically important as it implies that 24 hour acid suppression is necessary to attain healing in severe oesophagitis. Cardiologists are aware that blood pressure control needs to be maintained over the complete 24 hours to be effective and gastroenterologists need to become aware that complete 24 hour control of acid suppression is important in reflux oesophagitis. Developments in proton pump inhibitors need to be towards increasing the half life and duration of action.

R RANSFORD
Gastroenterology Department, County Hospital, Henley Road, Henley H1 0ER

Reply

Editor,—Dr Ransford has questioned the apparent increase in supine oesophageal acid exposure during treatment with omeprazole. He suggests that these findings are not logical and have three possible explanations. However, we agree that at first glance the findings might appear paradoxical, we disagree with his interpretation and explanations.

Firstly, we believe that Dr Ransford has overinterpreted the importance of the apparent increase in median acid exposure time. The value for supine acid exposure in the 40 mg omeprazole was not significantly different from that with 20 mg and we believe that this is so and this explanation is highly unlikely in the case of the 20 mg dose where patient numbers were adequate.

Secondly, the findings cannot be explained on the basis of rebound hypersecretion as, in contrast with acid inhibition with H2 antagonists, this does not occur with omeprazole.

In our view the most plausible explanation for the findings is that there was no significant inhibition of supine oesophageal acid exposure in the patients who did not heal, and that the higher median value represents intra-subject variability in supine acid exposure, which is known to be greater than in total or upright acid exposure.¹ We agree that adequate control of acid secretion throughout the 24 hour period is important to heal oesophagitis. However, whether or not the answer lies in the development of proton pump inhibitors with a longer half life and duration of action is debatable.

The duration of action of omeprazole is unrelated to its plasma half life. Increasing the duration of action might increase the adverse effects of prolonged acid secretion. There is some evidence that patients who appear refractory to omeprazole have more rapid metabolism of omeprazole¹ ² and perhaps this would be a more productive field for development of new proton pump inhibitors. An even better approach would be to develop drugs that would inhibit reflux by improving control of lower oesophageal sphincter function.

R H HOLLOWAY
J DENT
F MARIELVALA
A M MACKINNON
Gastrointestinal Medicine, Repatriation General Hospital, North Terrace, Adelaide, South Australia 5000

Microvascular disease in the human large bowel

Editor,—I read with interest the paper by Fawcett et al (Gut 1996; 38: 714–8) concerning the presence of microvascular disease in human large bowel and its relation to smoking, hypertension, and anastomotic healing after colectomy resection.

These authors examined material histologically from 147 patients who had undergone colectomy for a variety of diseases. They recorded (presence or absence) of intestinal hyperplasia, medial degeneration, and arteriosclerotic plaque formation but do not mention how they assessed the incidence of these lesions in the sections examined or the criteria used to decide whether any microvascular lesions noted were significant or not. Furthermore, the authors make no mention of any other morphological vascular change, such as medial hypertrophy, which has been shown to be present in the intramural vessels in patients with systemic hypertension.¹ Not withstanding these findings, direct statistical comparisons (χ²) between the presence of microvascular lesions and other parameters, such as smoking, hypertension, and anastomatic failure were made. The authors found that smoking and systemic hypertension were significantly associated with microvascular disease, mainly in the form of intimal hyperplasia, of their specimens.

Although sporadic lesions of the distal mesenteric and intramural vessels have been noted by several authors,₂ ³ it was our group who first systematically examined these microvascular changes quantitatively in human mesenteric and intramural vascular morphology.¹ ₄ ₅ In these studies the medial and intimal thicknesses of small extramural and intramural arteries (>100 μm in external diameter) and arterioles (<100 μm in external diameter) were measured under light microscopy; these indices being expressed as a percentage of external vessel diameter.¹ The incidence of intimal thickening (intimal fibrosis and intimal longitudinal hyperplasia) was determined by measuring the number of vessels with intimal thickening by the total number of measured vessels. Using these techniques, 2760 vessels from 53 patients were analysed. A positive correlation was noted between the degree of medial hypertrophy of both small mesenteric arteries and intramural arterioles and the level of diastolic blood pressure was observed. Taken in conjunction with reduplication of the internal elastic lamina, which is a common feature of hypertrophied vessels, our results indicate that small arteries and arterioles of the gut undergo the same changes as vessels in other organs in response to chronic hypertension. These changes may be regarded as adaptive and prevent overdistension of vessels in response to raised intravascular pressure. With respect to intimal disease, a direct relationship between the level of diastolic blood pressure and the degree and incidence of intimal fibrosis of intramural arteries and arterioles was shown.¹ Important age related changes were also observed in that the incidence of intimal fibrosis increased progressively with age in both extramural and intramural arteries and arterioles. The mean (SD) intimal thickness was 6 (1.9)% of external vessel diameter and the mean number of small arteries and arterioles affected was 2 (0.2). In contrast, we have been unable to demonstrate any statistically significant correlations between smoking and medial or intimal thickness of extramural or intramural vessels. We concluded that any microvascular disease of the gut in smokers is probably the result of associated hypertension. Most of the vascular changes in our material were seen in the submucosal layer of the bowel wall.

There has been much speculation about the significance of these vascular lesions. In distal mesenteric arteries it is probable that structural alterations reduce vascular compliance, impair the ability of vessels to dilate, and contract and interfere with the regulation of regional blood flow. Moreover, both medial hypertrophy and intimal fibrosis cause a decrease in the luminal diameter which may result in increase resistance to blood flow. Furthermore, because blood flow is inversely related to the fourth power of internal vessel radius, even minor degrees of medial hypertrophy and intimal fibrosis could significantly reduce flow within the gut microcirculation.

Fawcett et al make an unrefereed statement in the discussion section of their paper that the submucosa derives its blood supply from the serosal plexus. This conclusion is not in keeping with the findings of several microangiographic studies,⁶ ⁷ which show that the submucosa is the most vascular layer of the bowel wall and that the mucosa, mus-
cularis, and serosa receive their blood supply by secondary branches from the submucosal plexus of vessels. 8 9 Vasa recta have clearly been demonstrated, passing through the serosa and wall and joining the submucosal plexus. 1, 4, 5 Hence it seems probable that reduced serosal perfusion stems from either extramural vascular disease or obliterator lesions within the submucosal plexus.

The colonic microcirculation represents the final common pathway for the delivery of oxygen and nutrients to the tissues of the bowel wall and we agree with Fawcett et al that its integrity is critical to successful anastomotic healing. However, the importance of the serosal plexus, as emphasised by these authors remains open to question. It is noteworthy that the submucosal plexus is a compartmentalised network of arterioles and venules which is devoid of serosa and hence it is untenable that the vascularity of this layer plays any part in the healing of anastomoses below the peritoneal reflection. Based on our own microangiographic and fluorescent \(r \) analysis studies, 10-14 the submucosal region provides the cornerstone of perfusion of other layers of the bowel wall. We believe that preservation of the submucosal plexus by careful extramural surgery, thus the main anastomosis provides the most favourable set of circumstances for uneventful anastomotic healing.

NICK CARR
Department of Colorectal Surgery,
Singleton Hospital, Sketty,
Swansea SA2 8QA

7 Carr ND, Farragher EB, Hasleton PS. A quantita-

8 Carr ND. Microscopic anatomy of the normal colonic microcirculation. In: Marston A, Bulkey GB, Fidddian-Green RG, Hacklad UH, eds. Incontinence and multiple organ fail-
9 Spyt HJ, Margulis AR, McAlister WA. Micro-

10 Boultier PS, Parks AG. Submucosal vascular patterns of the alimentary tract and their sig-

13 Carr ND, Pullen BR, Schofield PF. Micro-

Reply

EDITOR.—The work by Mr Carr on the colo-

nic microcirculation is well known and we are grateful for his comments. He raises several points that require clarification.

In our study, the incidence of microvascular disease was assessed by examining all vessels apparent in at least two sections taken from the anastomotic margin. (Vessels taken fur-

ther away may not necessarily reflect the state of the vasculature at the anastomosis.) The incidence of the lesions can be easily assessed visually, particularly in the intima, which is open to inspection in the process of anastomosis.

Mr Carr and his group were unable to show a correlation between smoking and micro-

vascular disease in their research. We cannot explain this difference in results with any certainty, but would suggest that one reason for this discrepancy may be that this study, while examining fewer vessels overall than did Carr et al, involved nearly three times as many patients. Our study showed that not all smokers exhibit colonic microvascular disease. Thus the emphasis on attention to smoking involvement, the less likely it one would find a significant correlation it existed.

Our description of the submucosa ‘deriving’ its blood supply from the serosa is poorly phrased and we are grateful for this. We accept that the serosa is principally supplied by recurrent branches arising from the submu-

cosal plexus. Our intention was simply to point out that to reach the submucosal plexus, the vessels must pass through the serosa. If disease is present in the vessels as they travers-

ere the serosa, this clearly may affect the distal circulation. We thus agree that submu-

cosal perfusion may still be a critical factor in anastomotic healing, as we stated in the paper.

We would take issue, however, with Mr Carr’s comments concerning the role of the serosal layer in anastomoses formed below the peritoneal reflection. While it is true that the distal two thirds of the rectum has no serosal covering, the proximal end of such anasto-

moses are formed by intraperitoneal colon, which does have a serosal coat. The sig-

nificance of this serosal layer and its vascularity is open to question, but it is of interest to note that when a colorectal anastomosis breaks down as a consequence of ischaemia, it is more often than not the proximal end of the anastomosis that is at fault.

ADRIAN FAWCETT
Department of Surgery,
Charing Cross Hospital, Pulteney Palace Road,
London W 6 8RF

Five years of Laparoscopic Cholecystect-

There have been few advances in modern general surgery that have had such an impact on the management of a common problem as the introduction of laparoscopic cholecystec-

tomy (LC). This book commemorates the first five years of its widespread use by reporting the details of an international meeting held in Bern, Switzerland in May 1995. It generally represents an European perspective but there is limited US input.

The volume begins with a general introduc-

tion to gall stone disease, which includes chapters on the pathogenesis of the disease and the assessment of patients, the types of treat-

ment modalities available, and concludes with a summary of the history of cholecystectomy and a comparison between open versus laparoscopic procedures. Subsequently, it reports on various different countries’ experiences with LC and has chapters from sur-

geons in Switzerland, UK, Austria, Berlin, Hungary, and Chile.

This is a great deal devoted to ‘advanced techniques’ with articles on LC and acute cholecystitis and pancreatitis, the use of intra-

operative imaging of the biliary tree with cholangiography and ultrasonography, and the preparation of biliary duct stones. Unfortunately, the authors of these latter sections sit comfortably on the fence and fail to provide hard advice on whether operative cholangiography should be performed in the best way of managing bile duct stones under varying circumstances. Expert guidance could have replaced a ‘balanced’ reflection of controversies.

Predictably the volume finishes with a sec-

tion on the complications of LC and their management. This covers experiences with high risk patients, access related complica-

tions, bile duct injuries and ends rather incon-

gruously for the section with a chapter on gall bladder cancer.

Generally the volume is very readable and well presented, allowing the reader to browse rapidly through its contents and yet it contains a great deal of information on recent published data with an emphasis on LC and also gall stone disease and cholecystectomy in general. One could envisage this summary of information being a very useful source of information but this book is not this area and this is the volume’s main strength.

There is little in the way of novel concepts contained within the book and it is not the best source for detailed information about the management of bile duct injuries for example. The section on the management on the complica-

ted LC was generally rather weak and would have benefited from more pages of text with less emphasis on the experiences from different countries, the selection of which seemed arbitrary and I suspect re-

flected the individual biases of their respective authors.

While the width of topics covered was good, there are a couple of general omissions, namely: the impact of this technique on the training of surgeons and also the comparison of LC with miniholecystectomy, which received much attention in the recent Royal Society of Surgeons of Great Britain joint sym-

posium. It would be interesting to know of the European experience with these two opera-

tions and how it compares with the UK.

Ultimately, the book sums up the current state of references and background data but contains little new information to the experienced general surgeon.

MALCOLM WILSON
RORY McCLOY

BOOK REVIEWS