APC gene mutations and extraintestinal phenotype of familial adenomatous polyposis

F M Giardiello, G M Petersen, S Piantadosi, S B Gruber, E I Traboulsi, G J A Offerhaus, K Muro, A J Krush, S V Booker, M C Luce, S J Laken, K W Kinzler, B Vogelstein, S R Hamilton

Abstract

Background—Familial adenomatous polyposis (FAP) is caused by germline mutation of the adenomatous polyposis coli (APC) gene on chromosome 5q. Aims—This study assessed genotype-phenotype correlations for extraintestinal lesions in FAP.

Methods—Mutations of the APC gene were compared with the occurrence of seven extraintestinal manifestations in 475 FAP patients from 51 families. The frequency of manifestations was adjusted for different ages of patients using person years of exposure. In pedigrees without identified APC gene mutation, analysis of linkage to chromosome 5q and/or assessment of neoplasms for replication errors characteristic of mutation in mismatch repair genes were performed.

Results—FAP patients from the 42 families (82%) with identified mutations of the APC gene had more frequent expression of extraintestinal manifestations than affected individuals without identified mutations (risk ratio 1:2-4-0; significant difference for cutaneous cysts). The presence of a cutaneous cyst or extraintestinal cancer significantly increased the likelihood of detection of a mutation in the APC gene (94% and 92% respectively; p<0.05). In patients without identified APC gene mutation, linkage to the APC gene was found in one large family (lod=5:1, theta 0-01), and replication error phenotype was absent in all 24 neoplasms from 16 members of these nine pedigrees. Expression of pigmented ocular fundus lesions was strongly associated with mutations in codons 541-1309, but no other extraintestinal manifestations were related to mutation position. Multiplicity of extraintestinal manifestations was high with mutation in codons 1465, 1546, and 2621.

Conclusions—Patients with the colorectal phenotype of FAP but no extraintestinal manifestations may have non-truncating mutations of the APC gene or mutation in a gene other than APC or mismatch repair genes. The site of APC gene mutation is associated with pigmented ocular fundus lesions (codons 542-1309) and predisposition to multiplicity of extraintestinal manifestations (codons 1465, 1546, and 2621).

(Gut 1997; 40: 521-525)

Keywords: familial adenomatous polyposis, APC gene mutation, phenotype, extraintestinal lesions, Gardner syndrome.

Familial adenomatous polyposis (FAP) is an autosomal dominant disease characterised by the development of hundreds of colorectal adenomas in young adults. Germline mutations of the APC (adenomatous polyposis coli) gene located on the long arm of chromosome 5 in band q21-25 have been shown to result in the FAP phenotype. The APC gene has 15 exons and encodes a gene product of 2843 amino acids with a molecular weight of about 309000 Da. Mutations of the APC gene have been documented in more than 170 patients with FAP. Frameshift and point mutations are the most common types of alterations and are primarily located at the 5' half of the coding region of the APC gene. Most germline mutations in FAP patients result in stop codons and lead to truncation of the APC gene product.

The phenotype of FAP is well known to be variable, especially with respect to various extraintestinal lesions. In fact, Gardner syndrome, a variant of FAP with polyposis and extraintestinal manifestations, was originally described as a distinct entity. Patients with FAP can develop cutaneous cysts, osteomas, pigmented ocular fundus lesions (POFLs) (also known as congenital hypertrophy of the retinal pigment epithelium or "CHRPE"), occult radio-opaque jaw lesions, dental odontomas, and desmoids. Extraintestinal manifestations reported in association with FAP include tumours of the thyroid gland, adrenal gland, biliary tree, pancreas, and central nervous system.

The correlation of extraintestinal phenotype with specific APC mutations has not been evaluated in detail. Three studies have suggested that the occurrence of POFLs is restricted to APC mutation in codons 463 to 1444. Two investigations also reported that patients with mutations between codons 1445 and 1578 frequently developed desmoid tumours and mutations of the APC gene 3' to codon 1403 were associated with a more variable phenotype. Previous studies, however, have not accounted for differences in age of expression and cohort effects. Therefore, we evaluated seven specific extraintestinal manifestations in patients with FAP with and without identified mutation of the APC gene and determined the relation of specific extraintestinal lesions to the location of APC gene mutations with use of person year analysis. In pedigrees without identified APC gene mutation, analysis of linkage to chromosome 5q and/or assessment of neoplasms for replication errors characteristic of mutation in mismatch repair genes were done.
Methods

SUBJECTS
Data from subjects in the Johns Hopkins Polyposis Registry were used. This registry was initially gathered in 1973 from the six state area of the mid Atlantic region and now contains 369 pedigrees with FAP. Comprehensive patient medical and family information was obtained and subsequently computerised. The diagnosis of FAP in family members was verified by clinical and pathological criteria.1

GENOTYPE ANALYSIS
Among the 369 families with FAP in the Johns Hopkins Polyposis Registry, an affected member of 51 families was evaluated for mutation of the APC gene after informed consent was obtained. The APC gene was analysed in peripheral blood leucocytes by RNase protection assay or by in vitro synthesised protein assay, and by cloning and sequencing the entire coding region of the APC gene, as described previously.6 13 17 All affected members of a family were assumed to have the same mutation as the analysed affected member.

Linkage analysis was performed on one large, informative family in which no APC gene mutation had been detected by the methods described above (none of the other families was sufficiently large for linkage analysis). Linkage was based on 12 members of this 18 member three generation family. Markers which flank the APC gene (D5S112, D5S107, D5S82, D5S346, and D5S529) were utilised.

Ten colorectal cancers, 12 colorectal adenomas, a glioblastoma multiforme, and a breast carcinoma from 16 FAP patients representing all five pedigrees with no identified mutation of the APC gene (including the pedigree in which linkage analysis was performed) were evaluated for replication errors (RER, microsatellite instability), characteristic of mutations in mismatch repair genes. DNA from histopathological sections was used for analysis of simple repeated genomic sequences (microsatellites).26 Three dinucleotide repeats on chromosome 18q (D18S55, D18S58, and D18S64) and a polyA tract in the type II transforming growth factor β receptor gene were evaluated.31 32 The minimum criterion for an error in replication for this study was that at least one of the markers tested contained a band in the tumour PCR product that was not found in the corresponding non-neoplastic PCR product.

EXTRAINTESTINAL PHENOTYPE
The records of FAP patients in tested kindreds were evaluated for extraintestinal lesions without knowledge of APC gene mutation status. Cutaneous cysts and osteomas were identified by physical examination. Pigmented ocular fundus lesions (congenital hypertrophy of the retinal pigment epithelium) were determined by indirect ophthalmoscopic examination, and occult radio-opaque jaw lesions and odontomas by evaluation of panoramic radiographs of the maxilla and mandible, as previously reported.20 24 The presence of desmoids and other neoplasms was substantiated by review of clinical, surgical, and pathological records. The age at examination of each subject for each extraintestinal manifestation was recorded for use in person year analysis.

STATISTICAL METHODS
The primary statistical outcome of this investigation was estimating risk of extraintestinal lesions in patients with and without APC gene mutation. Differences in the prevalence of extraintestinal manifestations between these two groups were analysed by χ² test. Statistical significance was considered at p values <0.05. Because of differences in age and follow up or exposure time between groups, lesion frequencies were expressed as rate per person year of exposure, lambda, with 95% confidence limits for each estimated rate. For example, two lesions in patients examined at ages 50 and 25 would yield a rate of 2/(50+25)=2/75=0.0267 per person year exposure. Statistical significance was considered with non-overlapping 95% confidence intervals.

The influence of the APC gene mutation site on the expression of specific extraintestinal manifestations was analysed by plotting the mutated codon against prevalence of positive patients and rate of each extraintestinal manifestation expressed as events/person year, lambda. Multiple logistic regression to evaluate and adjust for potential confounding due to differing follow up and relative's distance from the proband was done.

The influence of APC gene mutation site on severity of extraintestinal phenotype was analysed by plotting the mutated codon of the APC gene against the sum of all extraintestinal manifestations expressed as all events/person year, lambda, for all seven analysed extraintestinal lesions. Exploratory multiple regression analysis was done to ascertain whether combinations of extraintestinal manifestations were associated with mutation site.

Results
Among 51 families, germline mutations of the APC gene were found in 42 families (82%) comprising 391 people with FAP. Mutations spanned codons 99 to 2644. Each specific mutation represented a single family except mutations at codon 625 (two families), codon 1061 (three families), and codon 1309 (nine families). No mutation by RNase protection assay was detected in nine FAP families with 84 affected individuals. In vitro synthesised protein assay performed in six of these pedigrees also revealed no APC gene mutation.

There was an excess of cutaneous cysts, osteomas, and extraintestinal cancers in the group with identified APC gene mutations (p values <0.001, 0.032, and 0.029, respectively). The rate of all extraintestinal lesions was higher in patients with detectable mutations (risk ratio range of 1.2–4.0, Table I). However, after
TABLE I Comparison of rates of extraintestinal lesions among FAP patients with and without identified mutations of the APC gene

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Group</th>
<th>No of patients</th>
<th>Events/person year</th>
<th>Lambda (95% CI)</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cysts</td>
<td>APC+</td>
<td>132</td>
<td>86/3383</td>
<td>0.025 (0.021-0.031)</td>
<td>3.6*</td>
</tr>
<tr>
<td></td>
<td>APC-</td>
<td>35</td>
<td>7/994</td>
<td>0.007 (0.003-0.014)</td>
<td></td>
</tr>
<tr>
<td>Osteomas</td>
<td>APC+</td>
<td>114</td>
<td>43/3135</td>
<td>0.014 (0.010-0.018)</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>APC-</td>
<td>31</td>
<td>4/833</td>
<td>0.004 (0.002-0.013)</td>
<td></td>
</tr>
<tr>
<td>POFLs</td>
<td>APC+</td>
<td>54</td>
<td>40/1729</td>
<td>0.023 (0.017-0.031)</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>APC-</td>
<td>8</td>
<td>4/280</td>
<td>0.014 (0.005-0.040)</td>
<td></td>
</tr>
<tr>
<td>Jaw lesions</td>
<td>APC+</td>
<td>64</td>
<td>48/1829</td>
<td>0.026 (0.020-0.034)</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>APC-</td>
<td>17</td>
<td>11/495</td>
<td>0.022 (0.12-0.040)</td>
<td></td>
</tr>
<tr>
<td>Odontomas</td>
<td>APC+</td>
<td>64</td>
<td>11/1829</td>
<td>0.006 (0.003-0.011)</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>APC-</td>
<td>17</td>
<td>1/495</td>
<td>0.002 (0.0003-0.014)</td>
<td></td>
</tr>
<tr>
<td>Desmoids</td>
<td>APC+</td>
<td>330</td>
<td>49/11424</td>
<td>0.004 (0.003-0.006)</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>APC-</td>
<td>81</td>
<td>3/2761</td>
<td>0.001 (0.0003-0.003)</td>
<td></td>
</tr>
<tr>
<td>Extraintestinal Ca</td>
<td>APC+</td>
<td>326</td>
<td>34/10948</td>
<td>0.003 (0.002-0.004)</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>APC-</td>
<td>81</td>
<td>4/2742</td>
<td>0.0015 (0.0005-0.004)</td>
<td></td>
</tr>
</tbody>
</table>

*Non-overlapping confidence intervals. POFLs=pigmented ocular fundus lesions; Ca=cancer.

accounting for person years of exposure, only the rate of cutaneous cysts distinguished patients with APC gene mutations when confidence limits between the two groups were considered. Adjustment for relative’s distance from the proband in multiple logistic regression models found no evidence of significant confounding.

Among the 475 patients studied, the presence of an extraintestinal manifestation increased the likelihood that the person would have an identified APC gene mutation. If an FAP patient was affected by extraintestinal cancer or cutaneous cysts, the conditional probability of detection of an APC gene mutation in the family was 94% and 92%, respectively, compared with 82% of all families in the study (p<0.05). The presence of osteomas (91%), POFLs (91%), and desmoids (89%) also indicated a trend towards increased likelihood, but occult radio-opaque jaw lesions (81%) and odontomas (79%) did not.

Linkage analysis was performed on one large, informative family in which no germline APC gene mutation was identified. Two-point lod scores for markers on chromosome 5q21 flanking the APC gene are shown in Table II.

Close linkage to this region was detected by the high lod score (5.1) for DSS346 for recombination fraction values (theta) less than 5%.

Replication errors characteristic of tumours with mutations in mismatch repair genes were absent in the DNA from neoplasms of all 16 patients representing the five pedigrees in which no germline mutation of the APC gene could be identified, including the family evaluated by linkage analysis.

An association between site of APC gene mutation and extraintestinal manifestation (evaluated by both frequency of positivity and person year analysis) was found only for POFLs (Fig 1). Eye lesions were noted with low frequency of positivity for patients with mutations that occurred 5’ to codon 541. All patients with mutations in codons 542-1309 were positive for POFLs and then the frequency of eye lesions decreased 3’ to codon 1309. Variance of extraintestinal manifestations within pedigrees did not correlate with the relation to the proband.

The influence of site of APC gene mutation on multiplicity of extraintestinal manifestations is shown in Figure 2. The rate of events/person year (lambda) appeared relatively consistent throughout the gene except for a high rate in patients with mutations in codons 1465, 1546, and 2621 and a dearth of multiplicity of manifestations with mutation in codon 436. Multiple regression analysis of these relations did not reveal significant associations between mutation site and particular combinations of extraintestinal manifestations.

Discussion

This study identified a low frequency of extraintestinal manifestations in patients from FAP families not found to have APC gene mutation. A potential reason for this phenomenon is that some of these individuals have APC mutations which are not detected by current methods and which, at the same time, do not predispose to extraintestinal manifestations. This includes APC mutations in splice sites or intronic regions, mutations that affect the protein product qualitatively and not quantitatively, and mutations that produce subtle modifications in the protein. Alternatively, mutation of another gene could be the

Figure 1: Association between rate (events/person year, lambda) of pigmented ocular fundus lesions (POFLs) and site of codon mutation of the APC gene. The finding of POFLs is strongly associated with mutations in codons 541 to 1309, but this extraintestinal manifestation is uncommon with mutations in more 5’ and 3’ sites of the gene.
the gene. However, desmoids did occur in patients with mutations throughout the gene, and 95% confidence limits for lambda overlapped with other areas. Only one of 11 patients with mutation 3' to codon 1578 had desmoid tumors.

Nugent et al reported that both desmoid disease and extraintestinal cancer were more common in patients with mutation at codon 1309 compared with individuals where knowledge of specific mutation was not available and to people with mutation at seven other sites. In our analysis, all extraintestinal manifestations were more frequently found in patients with mutation of the APC gene compared with those without mutation identified. Also, rates of desmoids and extraintestinal cancers in patients with mutations elsewhere in the APC gene were higher than for 1309 mutation.

We found no clear association between site of APC gene mutation and extraintestinal manifestations other than POFLs. However, analysis of the multiplicity of extraintestinal lesions revealed the highest rate with mutations at codons 1465, 1546, and 2621. This is consistent with another report. The molecular basis for differences in FAP extraintestinal phenotype resulting from specific sites of APC mutation is not known. Some investigators speculate that tumour suppressor activity of the APC gene protein varies with regard to target tissue and length of transcript. Alternatively, stability and biological activity of APC protein could differ with mutation site. On the other hand, although phenotypic differences seem to be associated with site of mutation, heterogeneity exists within and among families with the same APC gene mutation. This heterogeneity probably occurs through environmental influences and modifying gene(s), as suggested by the MIN mouse model of FAP which has germ line mutation in the mouse homologue of APC.

Understanding the function of the APC gene in various tissues may eventually explain the clinical observations.

Our findings concerning the relation of APC gene mutations and extraintestinal manifestations have implications for patient management. Gene testing is supplanting serial endoscopic procedures for identifying at risk individuals who have inherited a mutated APC gene and will develop FAP. The available method detects APC gene mutation in approximately 80% of FAP pedigrees (82% in this study). Our findings show that the presence of extraintestinal cancer or cutaneous cysts in an FAP pedigree significantly increases the pretest probability that an APC gene mutation will be identified in affected members. Moreover, the presence of POFLs can guide genetic analysis to reduce costs. The expense of APC gene testing, primarily because of the cost of laboratory reagents, can be a barrier to use by patient and physician. In this regard, finding POFLs in the pedigree allows direction of initial molecular analysis to specific segments of the APC gene (codons 463–1387), thereby reducing initial cost which would result if the entire gene was evaluated.
The results of genetic tests can help guide surveillance. For example, families with mutations in codons 1465–1546 should receive regular colonoscopic surveillance. In a recent study of FAP families with no mutation identified with current methods, studies looking directed at mechanisms of germline APC inactivation and at other potential genes remain important.

Supported in part by The Clayton Fund, Cancer Research Foundation of America and NIH grants CA 53801, CA 63721 and CA 62924. W. Groden thanks Linda M Welch for secretarial support and Patti A Longo for laboratory assistance.