Management of *Helicobacter pylori* infection in children

G Oderda

Summary

When trying to decide which children with *Helicobacter pylori* infection should be treated and at what stage they should be tested, we should take into account the fact that eradication of the infection may be useful both to induce symptom remission and to prevent later complications in adulthood. However, well designed studies to identify those infected children who are at risk of developing complications or have symptoms due to the infection are still lacking. Current literature only gives information on how to treat children with *H pylori* infection. Treatment regimens that include two drugs are usually more effective than in adults, and produce an eradication rate of 70–80%, but they should be given for at least two weeks, shorter treatments being less effective. Antibiotic resistance can impair eradication rate and the frequency of resistant strains in children should be studied. Combinations of antibiotics with antisecretory drugs are highly effective in adults, but triple therapy with two antibiotics and an antisecretory drug has been seldom tried in children; compliance is often poor so that the eradication rate is often similar to that produced by dual therapy. Compliance strongly influences eradication, and short simple treatment regimens that produce rapid symptom remission with few side effects are needed to optimise patient compliance. After treatment, eradication must be proved. Serological tests can help, provided that pretreatment serum is available and three to six months have passed since the treatment. A 13C-urea-breath test (13C-UBT) should be performed at least six weeks after treatment, but false negative results can occur and cut-off must be adjusted.

H pylori infected children: who and when to treat?

Guidelines for the management of *H pylori* infection in children are urgently required, but a consensus is lacking, because sound data on the role of *H pylori* infection in children are not available. The infection is usually acquired in childhood, and an early age of acquisition seems to be critical for development of severe complications later in life. As far as management of *H pylori* in children is concerned, one of the main issues is prevention of complications in adulthood, such as development of peptic ulcer and/or gastric atrophy and cancer. However, even though the prevalence of infection in children is lower than in adults, at least in developed countries, not all infected children can be tested and treated. Furthermore, if eradication is to be aimed at prevention of later complications, other risk factors associated with them need to be more extensively studied to identify children at highest risk. Such risk factors would include environmental ones, such as a diet rich in salt and nitrates and poor in fresh vegetables, *H pylori* strain characteristics, such as cagA positivity, and host characteristics, such as age at acquisition, gastric acid secretion, and family history of gastric cancer. If the hypothesis that subjects infected with a cytotoxic cagA+ *H pylori* strain are at higher risk of developing duodenal ulcer or gastric cancer proves to be correct, then children infected with this strain of *H pylori* in early life should be considered a high risk population. Furthermore, children infected with a cytotoxic cagA+ strain have more severe gastritis and a higher prevalence of duodenal ulcer and need to be more carefully studied and followed up. Preliminary data suggest that saliva can be screened by western blotting, thus providing a non-invasive test to identify children infected by cagA+ *H pylori* strain, but more studies are needed to confirm these results.

On the other hand, if treatment is to be aimed at producing symptom remission, a better understanding of the whole symptom profile associated with the infection is needed, with endoscopic studies on mucosal lesions and their relation to symptoms. The problem of recurrent abdominal pain (RAP) in children is similar to non-ulcer dyspepsia in adults, and the causal role of *H pylori* is controversial. In a recent survey on German preschool children, no relation between RAP and infection was found. However, according to the classical criteria of Apley (pain for at least three months, with one or more episodes per month, impairing daily activity or sleep), RAP is a common problem, being reported by 10–15% of schoolchildren, and requires more study. Possibly, Apley’s criteria should be reconsidered to try to identify different symptom profiles, and duration, severity, frequency, location of pain, and associated symptoms such as diarrhoea, constipation, vomiting, nausea, and heartburn, should be taken into account, and all children should be evaluated with similar questionnaires, to ascertain whether there is more than one subgroup of children with RAP. Up until now, there have been no criteria by which to identify which children have symptoms that are due to the infection; the only option has been to treat them and follow them up, and in those in which eradication is followed by a sustained and complete remission of symptoms a causal relation is suspected, as in children with peptic ulcers. A high proportion of children with gastritis are still symptomatic after eradication; in these, RAP and *H pylori* infection may coexist but are not related, and RAP may be due
to other more common causes such as irritable bowel or reflux oesophagitis.

NHI guidelines11 are that all patients with peptic ulcer, which in children is infrequent, should be treated. However, in H pylori infected children, gastric or duodenal ulcers are found in up to 12–20% of those subjected to endoscopy for dyspeptic symptoms,12 13 and an even higher proportion in those infected with a cagA+ strain. Should we then perform an endoscopy in all children in which a non-invasive test such as serology or 13C-UBT is positive to distinguish and treat those with a peptic ulcer and not treat all the others? Maastricht guidelines14 suggest that all dyspeptic patients younger than 45 years could be tested with a non-invasive test when no alarming symptoms are present, and treated if positive for the infection, without the need to perform an endoscopy. Studies on symptoms associated with H pylori infection in children are scarce, but some report the presence of alarm symptoms, such as malabsorption with weight loss, delay in weight gain, short stature, iron deficiency anaemia, or recurrent diarrhoea and malnutrition in infected children. More studies are needed to confirm these data, but in the mean time children with these clinical manifestations should be studied more carefully. However, the Maastricht guidelines are not meant to be applicable to children. Therefore, with respect to children, the main questions about when and who to test for the infection and who to treat still need to be answered.

Little is known about what happens after the infection is acquired in children and for this reason in September 1997, immediately before the Xth International Workshop on Gastro-duodenal Pathology and Helicobacter pylori held in Lisbon, the European Helicobacter pylori Study Group organised a Workshop in Estoril at which paediatricians from several European countries met to define how to design studies in the paediatric population to address some crucial questions (see box).

How to treat an H pylori infected child

While we await results from the studies designed in Estoril to answer the questions who and when to treat, data from the literature can help us to decide how to treat. However, even here we should be cautious when interpreting results, because most of the studies have been on small series of children and were not placebo controlled.

Questions to be tackled in future studies of Helicobacter pylori infection in children, defined at the Estoril Paediatric Workshop: focus on primary H pylori infection

- When and how does infection occur?
- When and how does infection reoccur?
- What is the natural history of H pylori infection?
- Why are there differences in pathological features between children and adults?
- Is there any correlation between infection and symptoms?
- How should a therapeutic scheme be evaluated in childhood?

Previous data, summarised in table 1, show that treatment with one antibiotic is not effective,15 16 dual therapy with or without bismuth salts is usually more effective than in adults,17–22 and triple therapy does not appear to produce any better eradication rates15 16; however, the dual therapy was usually given for four weeks or longer. Shorter treatments have been tried with amoxycillin and tinidazole, and eradication has been achieved in 81% of children treated for two weeks, but only in 66 and 69% in those treated for one week.25 26 Short treatments have a low efficacy even in children colonised by nitroimidazole sensitive strains.26 Antibiotic resistance is an important factor in impairing eradication rate, and frequency of resistant strains, principally those resistant to nitroimidazoles and macrolides, should be studied in any particular population before the antibiotics are used empirically.

In adults, one week treatments with two antibiotics and an antisecretory drug (triple therapy) are highly effective and can eradicate even antibiotic resistant strains.27 Reducing gastric acidity has various advantages: at neutral pH most antimicrobials have a higher stability, gastric immunoglobulins are less denatured, and H pylori is less stable in an ammonia rich neutral environment. In children, triple therapy with antisecretory drugs has been seldom tried, but, when compliance is poor (as is common because they are given in capsules that are difficult to swallow), the eradication rate is similar to that produced by dual therapy.28 In children with peptic ulcer, in whom gastric hyperacidity is one of the factors contributing to the severity of the

Table 1 Eradication rate in children with Helicobacter pylori infection in some early studies performed before the use of antisecretory drugs became widespread in adults

<table>
<thead>
<tr>
<th>Reference</th>
<th>No of children treated</th>
<th>Drug combinations used</th>
<th>Duration (weeks)</th>
<th>Eradication rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drumm et al22 (1988)</td>
<td>16</td>
<td>Bismuth + ampicillin</td>
<td>4 + 4</td>
<td>75</td>
</tr>
<tr>
<td>Oderda et al18 (1989)</td>
<td>30</td>
<td>Amoxycillin</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Oderda et al19 (1989)</td>
<td>32</td>
<td>Amoxycillin + tinidazole</td>
<td>6 + 6</td>
<td>75</td>
</tr>
<tr>
<td>Yeung et al23 (1990)</td>
<td>23</td>
<td>Amoxycillin + cimetidine</td>
<td>2 + 6</td>
<td>43</td>
</tr>
<tr>
<td>De Giacomo et al24 (1990)</td>
<td>19</td>
<td>Bismuth + amoxycillin</td>
<td>4 + 2</td>
<td>68</td>
</tr>
<tr>
<td>Oderda et al25 (1992)</td>
<td>63</td>
<td>Amoxycillin + tinidazole</td>
<td>4 + 4</td>
<td>80</td>
</tr>
<tr>
<td>Mahony et al26 (1992)</td>
<td>12</td>
<td>Bismuth + amoxycillin</td>
<td>8 + 2</td>
<td>75</td>
</tr>
<tr>
<td>Cucchiara et al27 (1992)</td>
<td>33</td>
<td>Bismuth + amoxycillin + tinidazole</td>
<td>8 + 2 + 2</td>
<td>78</td>
</tr>
<tr>
<td>Israel and Hassall28 (1993)</td>
<td>7</td>
<td>Bismuth + amoxycillin</td>
<td>6 + 6</td>
<td>71*</td>
</tr>
<tr>
<td>Ashton et al29 (1994)</td>
<td>3</td>
<td>Bismuth + amoxycillin + metronidazole</td>
<td>6 + 4 + 4</td>
<td>100*</td>
</tr>
</tbody>
</table>

*Only children with optimal compliance were considered out of 20 initial patients.
Of the total of 22 children, 12 had a duodenal and 3 a gastric ulcer.

<table>
<thead>
<tr>
<th>Reference</th>
<th>No of children treated</th>
<th>Drug combination used</th>
<th>Duration (weeks)</th>
<th>Eradication rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oderda et al(1996)</td>
<td>45</td>
<td>Omeprazole + clarithromycin + amoxycillin</td>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Omeprazole + clarithromycin + metronidazole</td>
<td>1</td>
<td>68</td>
</tr>
<tr>
<td>Cucchiara et al(1996)</td>
<td>30</td>
<td>Bismuth + amoxycillin + tinidazole</td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Bismuth + amoxycillin + tinidazole</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>Walsh et al(1997)</td>
<td>22</td>
<td>Bismuth + clarithromycin + metronidazole</td>
<td>2</td>
<td>70*</td>
</tr>
<tr>
<td>Kato et al(1997)</td>
<td>10</td>
<td>Omeprazole + amoxycillin</td>
<td>2</td>
<td>92*</td>
</tr>
</tbody>
</table>

*Of the total of 22 children, 12 had a duodenal and 3 a gastric ulcer.

Even though guidelines on the management of \(H \) pylori infection in children are still lacking, there may be some advantages to curing the infection in childhood. Although there are not enough data to justify eradication in all children with \(H \) pylori infection unless they have an ulcer, we should bear in mind that we still do not know the whole clinical picture of this chronic infection, and the longer the duration of the disease the worse seems to be the prognosis. Eradication in some children may promote symptom improvement, and in some may prevent development of peptic ulcer or gastric cancer later in life, but the beneficial effect of treatment for prevention of complications later in life still needs to be demonstrated.

To eradicate the infection early in life, at least in developed countries, could be worth while because of the low prevalence of infection in children and a satisfactory rate of eradication with the cheaper dual therapy. Moreover, if the new and intriguing hypothesis of “gastro-oral” transmission in children proves to be correct, by eradicating the infection in children, limitation of the spread of the disease may be achieved. Infection is mainly acquired in childhood, when it can be readily transmitted; an acutely infected child may vomit and spread \(H \) pylori mixed with mucous vomit throughout the house or classroom where siblings, parents, or schoolmates can easily pick it up and become infected.

