Antibodies to human gastric epithelial cells and heat shock protein 60 in *Helicobacter pylori* positive mucosa associated lymphoid tissue lymphoma

Y Kawahara, K Yokota, M Mizuno, N Yunoki, T Uesu, H Okada, K Kobayashi, Y Hirai, K Oguma, T Tsuji

Abstract

**Background**—Development of gastric mucosa associated lymphoid tissue (MALT) lymphoma is thought to be closely associated with host immune reactions to *Helicobacter pylori*.

**Aim**—To investigate humoral immune responses in patients with MALT lymphoma to antigens shared by *H pylori* and human gastric epithelial cells.

**Methods**—Sera were obtained from *H pylori* positive patients with MALT lymphoma (n = 11) or other gastroduodenal diseases (peptic ulcer, n = 40; non-ulcer dyspepsia, n = 20) and from *H pylori* negative healthy control subjects (n = 10). Antibodies to HGC-27 human gastric epithelial cells and human recombinant heat shock protein (Hsp) 60 were examined using an enzyme linked immunosorbent assay (ELISA) and immunoblotting.

**Results**—Antibody titres to HGC-27 cells were significantly elevated in *H pylori* positive patients with MALT lymphoma when compared with titres in patients with other gastroduodenal diseases and in healthy subjects. Immunoblotting of sera from patients with MALT lymphoma often detected a band with a molecular mass corresponding to Hsp60, and both ELISA and immunoblotting showed elevated antibody titres to the recombinant human Hsp60. Antigenic similarity between Hsp60 and *H pylori* HspB was documented by immunoblotting experiments.

**Conclusions**—Autoantibodies reactive with host gastric epithelial cells are often increased in MALT lymphoma, and Hsp60 is a major target antigen. Immune responses induced by immunological cross reactivity between *H pylori* HspB and human Hsp60 in gastric epithelium may be involved in the development of MALT lymphoma.

(Gut 1999;45:20–23)

Keywords: *Helicobacter pylori*; mucosa associated lymphoid tissue lymphoma; heat shock protein; autoantibody

Accumulating evidence suggests that *Helicobacter pylori* is involved in the pathogenesis of gastric lymphoma of mucosa associated lymphoid tissue (MALT) type. Antigenic mimicry between *H pylori* and the host mucosa may induce host autoimmune responses which lead to the development of the disease. Heat shock protein (Hsp) is one candidate for the cross reacting antigen(s). Hsps are a family of proteins induced by cell stress, such as microbial infections, and are conserved in both prokaryotic and eukaryotic cells. Hsps with identical antigenic structures have been shown by immunohistochemistry in *H pylori* bacterial cells and gastric epithelial cells of patients infected with *H pylori*. In this study, we investigated host humoral immune responses to *H pylori* which may lead to the production of autoreactive antibodies. We measured antibodies against gastric epithelial cells and human Hsp60 in patients with MALT lymphoma, peptic ulcers, and non-ulcer dyspepsia using an enzyme linked immunosorbent assay (ELISA) and immunoblotting.

**Patients and methods**

**PATIENTS**

Sera were obtained from 71 *H pylori* positive patients, including 11 with MALT lymphoma (six women and five men; mean age 59.8 years), 20 with gastric ulcer (three women and 17 men; mean age 46.3 years), 20 with duodenal ulcer (10 women and 10 men; mean age 30.4 years), and 20 with non-ulcer dyspepsia (six women and 14 men; mean age 41.5 years). Sera were also obtained from 10 healthy volunteers (seven women and three men; mean age 37.9 years old). Informed consent was obtained from each patient and healthy volunteer.

**Diagnosis** was made based on findings of endoscopic examination and histological examination of gastric biopsy or gastrectomy specimens. Histology of MALT lymphoma was assessed according to the REAL classification. Tissue specimens were analysed immunohistochemically using antibodies to IgG, IgG, CD20, CD3, CD75, and bc-2 (Dako Japan, Tokyo, Japan). Immunoglobulin heavy chain gene rearrangement was examined by Southern blotting and hybridisation with a probe to the joining region of the immunoglobulin heavy chain gene. All the lymphomas showed lymphoepithelial lesions histologically and an immunophenotype compatible with that of MALT lymphoma. Monoclonality of the tumours was shown either by light chain restriction immunohistochemically or by molecular

**Abbreviations used in this paper:** MALT; mucosa associated lymphoid tissue; Hsp, heat shock protein; ELISA, enzyme linked immunosorbent assay; PBS, phosphate buffered saline.
Infection with *H pylori* was documented by culture, rapid urease test, and histology of gastric biopsy specimens and by the presence of serum antibodies to *H pylori* by ELISA. *H pylori* was detected in the gastric mucosa of all patients whose sera were positive for anti-*H pylori* antibodies. Negative *H pylori* infection of the control healthy volunteers was defined by seronegativity to *H pylori*.

**Immunoblotting**

Sonicated *H pylori* extracts, HGC-27 cells, and the recombinant human Hsp60 were dissolved in 1% sodium dodecyl sulphate containing 5% 2-mercaptoethanol and separated by sodium dodecyl sulphate/polyacrylamide gel electrophoresis (10% gel). The separated proteins were fractionated on 10% polyacrylamide gels and then immunoblotted. (A) Lane A, The membrane strip was allowed to react with LK-2 mouse monoclonal antibody to human Hsp60. Lanes 1–7, the strips were allowed to react with serum from patients with mucosa associated lymphoid tissue (MALT) lymphoma. Bands with an approximate molecular mass of 60 kDa which correspond to Hsp60 are indicated by an arrow. (B) The membrane strip was allowed to react with serum from patients with non-ulcer dyspepsia (lanes 1–3), gastric ulcer (lanes 4–6), or duodenal ulcer (lanes 7 and 8), and from a healthy control subject (lane 9). Lane A, LK-2.
In this study, we found that serum antibody titres to HGC-27 human gastric epithelial cell were significantly elevated in *H pylori* positive patients with MALT lymphoma when compared with titres in *H pylori* positive patients who had other gastroduodenal diseases and in healthy subjects without *H pylori* infection. Our

**Figure 1** shows the distribution of antibody titres to HGC-27 human gastric epithelial cells in each group. Autoantibodies to HGC-27 cells were present in the serum of most patients with MALT lymphoma, and the antibody titres in these patients were significantly higher than those in the other patient groups and the healthy subjects (\( p<0.001 \)).

To define the target molecule(s) of the autoantibodies to HGC-27 cells, we performed immunoblotting using HGC-27 cells (fig 2). LK-2 anti-human Hsp60 mouse monoclonal antibody detected a band of molecular mass about 60 kDa, suggesting that HGC-27 cells constitutively express Hsp60. Serum from patients with MALT lymphoma detected various bands, and the band of molecular mass corresponding to Hsp60 was commonly observed in patients with MALT lymphoma (fig 2A). In contrast, serum from the other patient groups and the healthy control group rarely detected a band corresponding to Hsp60 (fig 2B).

Next, we tried to establish that the patients with MALT lymphoma had circulating antibodies to Hsp60, using immunoblotting and ELISA with the human recombinant Hsp60. On immunoblotting, 10 of 11 sera (91%) from patients with MALT lymphoma recognised a band of the recombinant human Hsp60 (fig 2), whereas sera from the other patient groups and the healthy control detected it significantly less often (0–20%, \( p<0.01 \)) (table 1). On ELISA, sera from patients with MALT lymphoma showed significantly higher antibody titres to the human Hsp60 than sera from the patients without MALT lymphoma and from the healthy control group (\( p<0.001 \)) (fig 4).

**Table 1** Detection of human recombinant Hsp60 by immunoblotting

<table>
<thead>
<tr>
<th></th>
<th>No of patients</th>
<th>Hsp60 positivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALT lymphoma</td>
<td>11</td>
<td>10 (91)*</td>
</tr>
<tr>
<td>Gastric ulcer</td>
<td>20</td>
<td>3 (15)</td>
</tr>
<tr>
<td>Duodenal ulcer</td>
<td>20</td>
<td>3 (15)</td>
</tr>
<tr>
<td>Non-ulcer dyspepsia</td>
<td>20</td>
<td>4 (20)</td>
</tr>
<tr>
<td>Healthy control</td>
<td>10</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Results in parentheses are percentages.

*\( p<0.01 \) for the other patient groups and healthy controls (\( \chi^2 \) test).

**Figure 4** Serum antibody titres to recombinant human Hsp60 in patients with mucosa associated lymphoid tissue (MALT) lymphoma, gastric ulcer, duodenal ulcer, or non-ulcer dyspepsia, and control healthy subjects. Serum antibodies to human Hsp60 were measured using ELISA with plates coated with recombinant human Hsp60. *\( p<0.001 \) (Student’s \( t \) test).
immunoblot experiments showed that sera from patients with MALT lymphoma often detected a band with a molecular mass corresponding to that of Hsp60. Moreover, elevated antibody titres to the recombinant human Hsp60 were shown by ELISA and immunoblotting. Thus Hsp60 is probably a major antigen recognised by the anti-HGC-27 antibodies present in serum of patients with MALT lymphoma.

The LK-2 anti-human Hsp60 antibody recognised the epitope encoded by amino acid residues 383 to 419 of the human Hsp60 protein. We found that this antibody also detected a band corresponding to bacterial HspB in \textit{H. pylori} extracts, suggesting that a common epitope(s) is present in human Hsp60 and its bacterial homologue, HspB. Thus infection of \textit{H. pylori} may induce antibodies against bacterial HspB which cross react with a host Hsp60 through the molecular mimicry of these proteins, leading to the elevation of antibodies to HGC-27 cells in patients with MALT lymphoma. We have recently observed staining with LK-2 anti-Hsp60 antibody in follicular dendritic cells in germinal centres of gastric mucosa from patients with MALT lymphoma, suggesting that the antigen recognised by the anti-Hsp60 antibody which originates from either the bacteria or the host cell is presented to immune cells in this disease.

We found that the immune response to Hsp60 was closely associated with MALT lymphoma. Although the association of MALT lymphoma with \textit{H. pylori} strains expressing the CagA protein has been reported, no specific differences in HspB protein amino acid sequences between bacterial strains from MALT lymphoma and those from other gastroduodenal diseases have been demonstrated. However, production of antibody to Hsp60 was less marked in other diseases with \textit{H. pylori} infection. Undefined bacterial changes or host genetic backgrounds of immune responses to the bacterial infection may lead to enhanced immune responses to Hsp60 in patients with MALT lymphoma, but the reason for this specific response awaits clarification.

Induction of immune responses to host components may lead to tissue injury of an autoimmune nature. It is well known that gastric mucosal lesions of MALT lymphoma are often resistant to ordinary peptic ulcer treatment—that is, control of acid secretion. Immunological responses to \textit{H. pylori} of both neoplastic B cells and non-neoplastic T cells have been reported in MALT lymphoma. In addition, gastric ulcers developed in severe combined immunodeficient mice transplanted with peripheral blood mononuclear cells from patients with MALT lymphoma when \textit{H. pylori} was orally inoculated. These observations suggest that the development of gastric mucosal damage in patients with MALT lymphoma involves host immune responses to \textit{H. pylori}. Hsp60 may be one of the target molecules.

In this study, a few \textit{H. pylori} infected patients with gastric disease other than MALT lymphoma also had elevated IgG titres to MALT 27-27 cells and Hsp60. We are carefully following these patients to see whether they will develop gastric MALT lymphoma. In addition, the common association of anti-Hsp60 and anti-HGC-27 antibodies with MALT lymphoma suggests that measurement of these antibodies may provide a new diagnostic indicator for the disease.

Portions of this work were presented at the Xth International Workshop on Gastrroduodenal Pathology and Helicobacter pylori and have been published in abstract form (Gut 1997;41[suppl 1]:A63). The authors thank Dr William R Brown (University of Colorado School of Medicine) for assistance in preparation of the manuscript. This work was supported by a grant-in-aid for scientific research from the Japanese Ministry of Education, Science, Sports and Culture, Tokyo, Japan, and by the Mitsui Life Social Welfare Foundation.