LETTERS TO THE EDITOR

Strong evidence that the N21I substitution in the cationic trypsinogen gene causes disease in hereditary pancreatitis

EDITOR,—We read with great interest the paper by Nishimori et al (Gut 1999;44:259–263) that reported the presence of two cationic trypsinogen gene mutations, the N21I in exon 2 and the R117H in exon 3, in two Japanese families with hereditary pancreatitis. Furthermore, this report showed that these mutations are worldwide and that the defect in cationic trypsinogen is important in the pathogenesis of hereditary pancreatitis. However, these authors questioned whether the N21I mutation could alter the molecular nature of the enzyme dramatically to produce pancreatitis, based on the observation that the first 38 N-terminal amino acids of the secreted cationic trypsinogen containing this mutation are identical to that of the native anionic trypsinogen isoform. This comparison may be important, but any possible functional effect of the mutation should be evaluated in the context of the tertiary structure of the native cationic trypsinogen itself.

The N21I mutation was first identified in two American families with hereditary pancreatitis by Gorry and colleagues1 in 1997; it has now been shown to be present in three German2 and two French3 families. The proposal that N21I also causes disease is strongly supported by the huge body of available research data, the linkage analysis, its perfect segregation with the dominant disease phenotype in several unrelated families with hereditary pancreatitis worldwide, its absence in the control chromosomes, and the previously identified R117H mutation in the same gene.

At issue is how to interpret the mutation and, in this regard, it is important to note that the physicochemical characteristics of isoleucine are quite different from those of asparagine. These differences could significantly affect the local conformational structure. Through computer analysis, Nishimori et al predicted that the N21I substitution could change the native turn structure of the flanking region of wild type cationic trypsinogen to sheet structure, on mutant type enzyme. Moreover, the N21I is located on the surface of the molecule and near the R117 site, revealed by the crystallographic structure of trypsin.1 Thus, taking into account of the self destructive model of R117H, it is reasonable to predict that the N21I mutation may impair trypsin inactivation through altering the accessibility of trypsin-like enzymes to R117, and/or protecting the adjacent C22-C157 disulphide bond to prolong survival of trypsin after limited hydrolysis.5

J M CHEN
B FEREC
Centre de Biogenetique,
University Hospital, LTSBO,
46 rue Félix Le Dantec,
BPM54, 29275 BREST Cedex,
France

6 Whitcomb DC. The first international symposium on hereditary pancreatitis. Pancreas 1999;18:1–12.

Speed of gastric emptying and metabolism of ethanol

EDITOR,—There seem to be several possible problems with the recent paper by Oneta and colleagues (Gut 1999;45:612–619). Firstly, blood ethanol concentrations said to be from an ethanol dosage of 0.225 g/kg were in the range of 0.2–0.3 mg/100 ml (figs 3–6 of Oneta et al’s paper). These values are about 1% of the expected blood concentration for 20 mg/100 ml instead of 0.2 mg/100 ml. We regret this mislabelling; however, neither first pass metabolism of ethanol (given in percentages) nor its modulation by changes in gastric emptying are affected by this.

Difficulties in the area under the ethanol concentration time curves have been used previously to describe first pass metabolism of ethanol and give reliable approximations, although we are aware that this measurement has some disadvantages. Others have also used these differences,1 as mentioned in the discussion of our paper and which need not be reappraised. Ethanol was given intravenously over 30 minutes which allows some time for distribution. However, it is true that the input rate of ethanol affects its bioavailability and the area under the ethanol concentration time curve. If the input rate of ethanol through the different administration rates is similar—for example, comparable time profiles, the area under the curve method should still be valid.1

We did not find a significant positive correlation between first pass metabolism and gastric ADH activity as discussed in the results section of our paper, and it was emphasised in the discussion that such a correlation could not be confirmed. Thus, it did not seem necessary to exclude the two (statistically questionable) subjects with negative first pass metabolism in order to show that there was no correlation. Furthermore, it was not the purpose of this paper to give evidence for such a correlation. In contrast, changes in gastric emptying time may explain changes in first pass metabolism.

C M ONETA
Department of Gastroenterology,
Centre Hospitalier Universitaire,
Vaudin, CHUV Lausanne, Switzerland

H K SEITZ
Department of Medicine,
Salem Medical Centre,
Heidelberg, Germany