Article Text

Download PDFPDF
The molecular and genetic base of congenital transport defects
  1. J-F DESJEUX
  1. Conservatoire National des Arts et Métiers
  2. Paris, France.
  3. Email: desjeux@cnam.fr

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

    In the past 10 years, several monogenetic abnormalities have been identified in families with congenital intestinal transport defects. Wright and colleagues1 2 described the first, which concerns congenital glucose and galactose malabsorption. Subsequently, altered genes were identified in partial or total loss of nutrient absorption, including cystinuria, lysinuric protein intolerance, Menkes' disease (copper malabsorption), bile salt malabsorption, certain forms of lipid malabsorption, and congenital chloride diarrhoea. Altered genes may also result in decreased secretion (for chloride in cystic fibrosis) or increased absorption (for sodium in Liddle's syndrome or copper in Wilson's disease)—for general review see Scriver and colleagues,3Desjeux,4 and Krawczak and Cooper5(http://www.uwcm.ac.uk/uwcm/mg/hgmd0.html). When considering the rarity of these diseases, we may ask why gastroenterologists should be concerned with these discoveries? My personal answer is that we may gain information in three main areas: (1) the pathophysiology and treatment of these diseases; (2) the use of genetics in gastroenterology; and (3) the genetic control of nutrient absorption. Thus by recognising the entry of genetics into the field of gastroenterology, we may have to adapt to a new way of thinking to fully participate in restoring or maintaining the good health of mankind. In this paper, for the sake of simplicity, only monogenic diseases will be considered.

    Relationship between phenotype and genotype

    In some diseases the relationship between phenotype and genotype is quite convincing. Glucose and galactose malabsorption (GGM) is a rare congenital disease resulting from a selective defect in the intestinal glucose and galactose/Na+ cotransport system. It is characterised by neonatal onset of severe watery acidic diarrhoea. Children recover if glucose and galactose are withdrawn from the diet. Interestingly, GGM was described by French and Swedish paediatricians when the American biochemist R K Crane was presenting his hypothesis on the glucose-Na+ cotransporter at the luminal membrane of the …

    View Full Text

    Footnotes

    • Leading articles express the views of the author and not those of the editor and editorial board.

    • Abbreviations used in this paper:
      GGM
      glucose and galactose malabsorption
      LPI
      lysinuric protein intolerance
      CFTR
      cystic fibrosis transmembrane conductance regulator
      CLD
      congenital chloride diarrhoea
      DRA
      down regulated in adenoma
      IFM
      isolated fructose malabsorption