LETTERS TO THE EDITOR

Timing of transfusion, anti-HBc, and hepatitis C virus related hepatocellular carcinoma

EDITOR,—Dr Marusawa and colleagues (Gut 1999;45:284–288), commenting on their findings of a high prevalence of antibodies to hepatitis B core antigen (anti-HBc) in Japanese patients with hepatitis C virus (HCV) chronic liver disease, suggest that HBV infection has a role in the development of hepatocellular carcinoma (HCC) in patients with HCV. We would like to raise a methodological point that may influence the interpretation of their findings.

HBV and HCV infections share common mechanisms of transmission and are highly correlated. Therefore, it is not surprising that the prevalence of anti-HBc was much higher in individuals with chronic HCV infection than in the anti-HCV negative controls. But why would patients with HCV associated HCC have a higher prevalence of anti-HBc than individuals with chronic hepatitis B and liver cirrhosis? Stratified analyses suggested this finding is not related to age or history of past transfusion, or to other risk factors that might have confounded this association. An alternative explanation to that provided by Marusawa et al is that the differences in prevalence are due to timing of transfusion, an important fact that was not analysed in the study. Before screening of blood donors for HBsAg, transfusions were much more likely to transmit hepatitis B. Patients with HCC were, on average, more than 20 years older than other individuals with chronic HCV infection, and were therefore more likely to have received HBV positive blood transfusions.

Dr Marusawa and colleagues’ hypothesis may well be correct, and it has support from findings of other studies, quoted in their article, that have shown evidence of persistent HBV infection in HBsAg negative, anti-HBc positive individuals. Nevertheless, one should be cautious in accepting this hypothesis until all alternative explanations are ruled out.

S DE A NISHIOKA
Centro de Ciências Biomédicas,
Universidade Federal de Uberlândia,
Uberlândia, Brazil
Correspondence to: Dr S de A Nishioka, Al. Sosthenes Guimarães 667, 38411–160 Uberlândia, MG, Brazil. Email: snishioka@umuarama.ufu.br

Reply

EDITOR,—As pointed out by Dr Nishioka, hepatitis B virus (HBV) can be transmitted via blood transfusion from infected donors or by injection using contaminated instruments, as is the case with hepatitis C virus (HCV) infection. Thus it may appear reasonable to consider that a high prevalence of HBV related serological markers in patients with HCV positive liver disease is due to simultaneous transmission of HCV and HBV. On the contrary, in patients with HCV related chronic liver disease, we could not find any correlation between anti-HBc positivity and various risk factors for blood borne infection, including previous history of blood transfusion and intravenous drug abuse. Furthermore, although the prevalence of anti-HBc increases as liver disease progresses, among patients with chronic hepatitis (CH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC), the percentage with a history of blood transfusion is remarkably different. Therefore, we concluded that the high prevalence of HBV serological markers in patients with HCV related chronic liver disease was not correlated with their history of blood transfusion. We certainly appreciate the comments of Dr Nishioka suggesting that the differences in HBV seroprevalence among patients with CH, LC, and HCC may be due to the different timing of transfusion.

In fact, the mean age of patients with HCC was five years older than that of patients with CH or LC in our study population. In Japan, screening of blood donors for hepatitis B surface antigen (HBsAg) was initiated 20 years ago, and since then occurrence of post-transfusion hepatitis B has dramatically decreased. Thus those patients with HCC might actually have experienced a higher risk of receiving HBsAg positive blood transfusions than those with CH or LC. To address this possibility, we further investigated the seroprevalence of antibody against hepatitis B core antigen (anti-HBc) among our patients who had received blood transfusion before the start of HBsAg screening of blood donors. Even among the HCV positive patients who had received blood transfusion before screening began, the percentages of anti-HBc-positive cases were markedly different between patients with CH (85/192, 44.2%), LC (50/101, 49.5%), and HCC (68/119, 57.1%). Moreover, these percentages reflected those of the total population of patients with CH, LC, and HCC, irrespective of their blood transfusion history (43.8%, 49.8%, and 59.4%, respectively).

That said, we believe that the high prevalence of antibody against hepatitis B core antigen in patients with CH, LC, and HCC in our study population is an important finding and deserves clarification in future studies.

H MARUSAWA
T CHIBA
Department of Gastroenterology and Hepatology,
Postgraduate School of Medicine,
Kyoto University, Kyoto, Japan
Email: chiba@ph.b.kyoto-u.ac.jp


Acid secretion in H pylori associated enlarged fold gastritis

EDITOR,—I was interested to read the elegant report of Murayama et al (Gut 1999;45:653–661) demonstrating increased inflammation and abnormal parietal cell morphology and function in patients with Helicobacter pylori associated giant fold gastritis. However, the authors raise several points which deserve further comment.

The authors suggest that mediators of the inflammatory response may be important in inhibiting acid secretion and cite interleukin 1β (IL-1β) as the most important agent. It would be unwise not to consider other mediators. It is clear that IL-1β has a variety of inhibitory actions; inhibiting gastric acid secretion when given both parenterally and intracebrally, as well as having direct reversible inhibitory actions against both parietal cells and ECL cells. Even though produced IL-1β may certainly be an important mediator of hypochlorhydria, indeed the same authors have previously shown that IL-1β production in giant fold gastritis was negatively correlated with acid secretion. The authors have also demonstrated increased hepatocyte growth factor (HGF) production in giant fold gastritis, and although suggested to have a role in the fold enlargement, studies in canine parietal cells have not identified inhibitory actions of HGF. Considerable data are available demonstrating that tumour necrosis factor α (TNF-α) is an important proinflammatory cytokine which is increased in H pylori gastritis; however, there are no data specific to giant fold gastritis, it would be surprising if TNF-α expression were not increased. TNF-α also directly inhibits parietal cell acid secretion. Data on epithelial growth factor (EGF) and transforming growth factor α (TGF-α) and related peptides in H pylori infection are rather conflicting but there is evidence that expression is increased. These peptides are also potent inhibitors of parietal cell acid secretion, and transient over expression of TGF-α produces fooveolar hyperplasia and hypochlorhydria. Thus at present it would be wise to consider these and other possibilities as mediators of the reversible acid inhibition in H pylori associated acid inhibition.

Secondly, the authors believe that anti-gastric antibodies are not implicated in the pathophysiology of giant cell gastritis. They were unable to detect antibodies reactive with human gastric mucosa in any of their six subjects, but in the absence of more information on methodology and controls, the significance of these data remains uncertain.

Negrini et al detected autoantibodies and heterologous antigenic antibodies in 65% of H pylori infected patients, with an even greater prevalence with greater degrees of gastric inflammation (as seen in giant fold gastritis). The authors suggest that mediators of the inflammatory response may be important in inhibiting acid secretion or may be merely a secondary phenomena following parietal cell damage. The data, as presented by Murayama et al, do not reliably exclude a pathogenic role for autoantibodies. Indeed if further larger studies confirm the absence of autoantibodies in giant cell gastritis, this will greatly facilitate our understanding of both the mechanisms of control of acid secretion in H pylori infection and generation of gastric autoantibodies.

Finally, the authors appear to regard the hypergastrinaemia a secondary consequence to inhibition of acid secretion. In light of this, it is unfortunate that they did not study a control group with drug induced secondary hypochlorhydria, as it is surely possible that some of the reversible parietal cell morphological changes result from...
prolonged exposure to high levels of gastrin and gastrin precursors in the face of continued block of parietal cell function.

I look forward to further studies in this interesting patient group and hope that future studies will include appropriate controls to establish conclusively the pathophysiology of giant cell gastritis.

I. P. BEALES
University of Cambridge, Department of Medicine, Cambridge CB2 0QQ, UK
Email: beales@doctors.org.uk


Reply

EDITOR,—We thank Dr Beales for the interesting comments on our paper.

The pathogenic mechanism by which Helico- bacter pylori infection induces decreased gastric acid secretion and alterations in pari- etal cell morphology remains unclear in patients with enlarged fold gastritis. One possible mechanism is that the cytokines pro- duced by local immune system cells during inflammation may indirectly affect gastric function. Based on our previous finding that fundic mucosal interleukin 1β (IL-1β) pro- duction was enhanced in H pylori associated enlarged fold gastritis, it is suggested that IL-1β was involved in the inhibition of acid secretion. As Dr Beales suggested, tumour necrosis factor α (TNF-α) is also of the important factor for the inhibition of acid secretion. Unfortunately, we did not measure TNF-α levels in patients with enlarged fold gastritis, H pylori positive patients without enlarged folds, and H pylori negative patients with dyspeptic symptoms. However, we have previously demonstrated that macrophage infiltration in the body mucosa was signifi- cantly more extensive in patients with en- larged fold gastritis. TNF-α is a cytokine which is produced mainly by activated macrophages. Therefore, we agree that TNF-α released by activated macrophages might also affect acid secretion in patients with enlarged fold gastritis. Thus the produc- tion of these cytokines, including IL-1β, TNF-β, and others in inflamed mucosa might be equally important in the regulation of acid secretion in patients with enlarged fold gastritis. It is unlikely that transforming growth factor α (TGF-α) is involved in this pathophysiology, as we have previously re- ported that TGF-α mRNA levels in the body were not increased in patients with enlarged fold gastritis. Dr Beales suggested the possibility that the presence of antigenic autonutibodies due to H pylori infection might affect the morpho- logical and/or functional changes in parietal cells. As reported in our paper, however, the antigastric autonutibodies in the sera of these patients with enlarged fold gastritis was undetectable, at least by our method. Faller et al reported that the occurrence of transforming antigastric autoantibodies, especially anticanalicular auto- antibodies, correlates with the severity of body atrophy, and atrophic changes of the gastric mucosa. In our study, a significant difference in body atrophy was not found among the six patients with enlarged fold gastritis, six H pylori positive patients without enlarged folds, or six H pylori negative patients. No significant change was observed in the degree of body atrophy after H pylori eradication in patients with enlarged fold gastritis. Thus it is also possible that antigastric autonutibodies do not necessarily exist in patients with enlarged fold gastritis. But when the gastric atrophy that develops in future, antigastric autonutibodies may be detected in patients with enlarged fold gastritis. We feel that further larger investigations will need to clarify the pathophysiological significance of antigastric autonutibodies.

In our study, serum gastrin concentrations were correlated with morphological changes in parietal cells, as both elevated serum gastrin and morphological changes in parietal cells were found in patients with enlarged fold gastritis. Thus changes in the secretory canaliculi in parietal cells may possibly be due to differences in the degree of gastrin stimu- lation. However, it was reported that electron microscopic morphometry in normal sub- jects in a potential experimental model of patients with Zollinger-Ellison syndrome, which accompanied hypergastrinaemia, showed no significant alteration of parietal cells such as dilated canaliculi with vacuole-like structures and few short microvilli. Therefore, we think it is unlikely that changes in the secretory canaliculi were due to differences in gastrin stimulation.

To resolve these issues, further analyses are needed in larger numbers of patients with enlarged fold gastritis, as Dr Beales sug- gested.

Y. MURAYAMA
M. MIYAGAWA
K. KANAYAMA
Y. SHINOMURA
Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
Email: yokom@med.osaka-u.ac.jp


Is there any relationship between IEL and lymph follicles in the gastric mucosa?

EDITOR,—The article by Hayat et al (Gut 1999;45:495–498) reporting the decrease in intraepithelial lymphocytes (IEL) in the gastric mucosa after Helicobacter pylori eradica- tion is interesting and confirms the sugges- tion that lymphocytic gastritis could be a manifestation of an atypical host immune response to H pylori. But we would like to ask Dr Hayat and colleagues whether they also investigated the presence of lymphoid folli- cles in the lamina propria of gastric mucosa of their patients. In fact, mucosa associated lymphoid tissue (MALT), organised in folli- cles with a germinative centre and B cell reactivity, which structurally resemble Peyers’s patches, can develop in the lamina propria after H pylori infection.1,2 Also, the develop- ment of these reactive lymphoid follicles may depend on the characteristics of the host and stimuli other than H pylori. We found lymphoid follicles in the gastric mucosa of 30% of our coeliac patients, of whom only 38% were infected with H pylori,1 supporting the hypothesis that the presence of the host to various environmental factors (diagnosis, H pylori, viral agents, other factors?) could be essential for the formation of lymphoid agglomerate.

In contrast, the functions of IEL remain a subject of speculation at present. They could be a reaction to abnormal antigen or an indica- tion of abnormal regulatory mechanisms in the stomach. In some cases these cells have been shown to express CD4 whereas in others, CD8 cells predominate. However, they could play a part in negative regulation of the immune response or, alternatively, in B cell proliferation. Similarly, in the presence of lymphoma, they could represent the outflow of tumour associated T lymphocytes, neces- sary for the growth of the neoplasia.3 In summary, these IEL may participate in the proc- ess of B lymphocyte stimulation where abnormal antigenic stimulation probably plays an important part.

Dr Hayat, what is your opinion about the relationship between IEL and lymphoid folli- cles in the gastric mucosa?

G CAMMAROTA
G GABSBARRINI
Correspondence to: Dr G Cammarota, Policlínico “A Gemelli”, Università Cattolica del Sacro Cuore, Istituto di Medicina Interna e Geriatria, Largo A.Gemelli, 8-00168, Roma, Italy. Email: gcammarota@libero.it


www.gutjnl.com

Letters, Book review, Notes
Editor.—This letter is the third from these authors on the subject of coeliac disease (CD) and Helicobacter pylori infection. Their previous letters have discussed the presence of follicles or lymphoid follicles and have been published thus far. Their first letter reported on findings in multiple gastric biopsies from 43 patients with CD.1 Thirteen of the 43 (30%) had gastric lymphoid follicles but only five of these had Helicobacter pylori infection, the usual cause of acquired mucosa associated lymphoid tissue (MALT) in the gastric mucosa. Their second letter speculated on the relationship between lymphocytic gastritis (LG), lymphoid follicles, and H pylori infection. The authors suggested that “the behaviour of H pylori positive lymphocytic gastritis after antimicrobial treatment should be further investigated”. Our report in such a trial has elicited a further letter in which Dr Cammarota and Professor Gasbarrini again speculate on the role of IELs in B cell proliferation and argue that such stimulation could lead to follicle formation and ultimately to B cell lymphoma (MALToma).

The key feature of LG is an increase in IELs above a threshold of 25 per 100 epithelial cells, and is therefore analogous to coeliac disease (CD). In CD the most sensitive indicator of a response to treatment is a decline in the density of IELs. Thus we investigated IEL numbers as a measure of response in LG. Follicles are only an occasional pathological finding in LG and are not considered to be part of the disease process. We did not therefore investigate the presence of follicles or their relationship to IELs. Indeed, we would go further and claim that there is no rational basis for undertaking such an exercise. B cell proliferation is a consequence of stimulation by activated CD4+ (helper) T lymphocytes mainly through cell-cell contact via the CD40 ligand. Small intestinal IELs are largely made up of CD8+ (helper) T lymphocytes (that is, cytotoxic/suppressor phenotype). Although there are differences between gastric IELs in LG and CD, both the latter populations are largely made up of approximately 70% of CD8+ cytotoxic/suppressor lymphocytes, with an even greater proportion of IELs expressing a cytoplasmic protein, TIA-1, which is a marker of cytotoxic potential.1 Thus few, if any, gastric IELs are of the CD4+ helper T cell phenotype. The role of IELs is not definitely known but there is nothing to suggest that they play a part in follicle formation or control of immunoglobulin synthesis.

Follicles are a prominent feature of H pylori gastritis where IEL counts are uniformly low. Indeed, follicles are particularly prominent in childhood infection where IEL counts are lower than in adult infected controls.1

Perhaps Dr Cammarota and Professor Gasbarrini can themselves suggest the mechanism by which IELs stimulate B cell proliferation and test their hypothesis by performing IEL counts and quantitation of IEL subtypes in gastric biopsies with and without follicles from their CD patients?


Reply

Editor.—The paper by Cawkwell and colleagues (347:409–415) on the utility of hMLH1 and hMSH2 immunostaining in colorectal cancer


Editor.—The paper by Cawkwell and colleagues (347:409–415) on the utility of hMLH1 and hMSH2 immunostaining in colorectal cancer may mislead the unwary reader just as it misled the author of the accompanying commentary (347:455, 352): “The role of IELs is not definitely known but this hypothesis appears to be correct”. Our report in such a trial has elicited a further letter in which Dr Cammarota and Professor Gasbarrini again speculate on the role of IELs in B cell proliferation and argue that such stimulation could lead to follicle formation and ultimately to B cell lymphoma (MALToma).

The key feature of LG is an increase in IELs above a threshold of 25 per 100 epithelial cells, and is therefore analogous to coeliac disease (CD). In CD the most sensitive indicator of a response to treatment is a decline in the density of IELs. Thus we investigated IEL numbers as a measure of response in LG. Follicles are only an occasional pathological finding in LG and are not considered to be part of the disease process. We did not therefore investigate the presence of follicles or their relationship to IELs. Indeed, we would go further and claim that there is no rational basis for undertaking such an exercise. B cell proliferation is a consequence of stimulation by activated CD4+ (helper) T lymphocytes mainly through cell-cell contact via the CD40 ligand. Small intestinal IELs are largely made up of CD8+ (helper) T lymphocytes (that is, cytotoxic/suppressor phenotype). Although there are differences between gastric IELs in LG and CD, both the latter populations are largely made up of approximately 70% of CD8+ cytotoxic/suppressor lymphocytes, with an even greater proportion of IELs expressing a cytoplasmic protein, TIA-1, which is a marker of cytotoxic potential.1 Thus few, if any, gastric IELs are of the CD4+ helper T cell phenotype. The role of IELs is not definitely known but there is nothing to suggest that they play a part in follicle formation or control of immunoglobulin synthesis.

Follicles are a prominent feature of H pylori gastritis where IEL counts are uniformly low. Indeed, follicles are particularly prominent in childhood infection where IEL counts are lower than in adult infected controls.1

Perhaps Dr Cammarota and Professor Gasbarrini can themselves suggest the mechanism by which IELs stimulate B cell proliferation and test their hypothesis by performing IEL counts and quantitation of IEL subtypes in gastric biopsies with and without follicles from their CD patients?

The history of the development of drugs to treat the so-called acid related diseases makes a fascinating story, and the publication of this book addresses a significant chapter in that story. Before 1976, treatment of peptic ulcer and gastroesophageal reflux disease was either inadequate medical therapy involving antacids, non-selective anticholinergic drugs, or surgery with its associated morbidity problems. The advent of cimetidine (Tagamet), the first of the histamine H2 receptor antagonists revolutionised the therapy of these diseases, and cimetidine became the first billion dollar drug. Subsequently, ranitidine (Zantac) superseded cimetidine as the world’s most successful drug.

Despite their success, H2 antagonists had some limitations, particularly in the treatment of gastroesophageal reflux disease and the arrival of omeprazole, the first proton pump inhibitor, with its profound and sustained inhibitory action on acid secretion represented a further significant therapeutic advance.

While the discovery of cimetidine was based on systematic pharmacological analysis aimed at a known target, that of the first proton pump inhibitors was serendipitous, their target and mechanism of action being initially unknown, and those early days are excellently described in the first chapter of this volume. The story of the antiserotonin is often one of “what might have been,” and this is illustrated by George Sachs in Chapter 2. He points out that SmithKline & French in Philadelphia instigated a programme for the regulation of gastric secretion by inhibiting the acid pump only as a research project but with the success of the H2 antagonist programme in the United Kingdom, work was abandoned in 1973. Would history have been different if they had continued?

Chapter 1 ends on an enigmatic note, the final sentence stating that despite demonstration of clinical efficacy in the first trials of omeprazole described in 1982, “new problems were waiting around the corner”. I assume this refers to the gastric carcinoid lesions found in long term toxicity tests on rat. At the time, this discovery generated genuine concern, and some hysteria, regarding the safety of proton pump inhibitors, and it certainly delayed the development and ultimate approval of omeprazole. However, the company involved, Astra, successfully convinced the regulatory authorities that it did not represent a problem for human studies, a position vindicated by the data presented by Werner Creuzfeldt in his key chapter. Interestingly, SmithKline & French and Glaxo took a different attitude when their long acting H2 antagonists led to similar carcinoid formation and stopped their development programmes—was this the right decision?

Concerns about sustained hypergastrinaemia caused by the prolonged inhibition of acid secretion by proton pump inhibitors also prompted the search for reversible K+ competitive H/K+ATPase inhibitors, examples of which entered the clinic, but these too have been largely discredited on the grounds of efficacy and safety of available drugs.

Given the fact that omeprazole has been on the market for a decade, and in the light of its clinical and commercial success, it is surprising that this volume represents the first book to address the proton pump inhibitors, and I am pleased to say it fills that gap admirably. Lars Olbe has gathered together an excellent team of authors to produce a volume that is comprehensive (I cannot identify any aspect of the subject that is missing) and scientifically rigorous, but at the same time eminently readable for both the basic scientist and the clinician. History is dealt with, mechanisms of action made clear and understandable, clinical efficacy demonstrated, and the chapters on Helicobacter pylori bring us bang up to date. In the socioeconomic section it would have been interesting to have some numbers (in ecus) to give an idea of the savings brought about by the use of proton pump inhibitors, but maybe this is unquantifiable. Most chapters have comprehensive bibliographies and the overall presentation of the book is good, although the index is a trifle thin—well, nothing can be perfect. It is difficult to judge the potential success of the book for a broad readership when the reviewer was actively involved in the field. As most reviewers say, I will certainly have this volume on my bookshelf, and it is not because I can keep my review copy.

M E PARSONS

BOOK REVIEW


The history of the development of drugs to treat the so-called acid related diseases makes a fascinating story, and the publication of this book addresses a significant chapter in that story. Before 1976, treatment of peptic ulcer and gastroesophageal reflux disease was either inadequate medical therapy involving antacids, non-selective anticholinergic drugs, or surgery with its associated morbidity problems. The advent of cimetidine (Tagamet), the first of the histamine H2 receptor antagonists revolutionised the therapy of these diseases, and cimetidine became the first billion dollar drug. Subsequently, ranitidine (Zantac) superseded cimetidine as the world’s most successful drug.

Despite their success, H2 antagonists had some limitations, particularly in the treatment of gastroesophageal reflux disease and the arrival of omeprazole, the first proton pump inhibitor, with its profound and sustained inhibitory action on acid secretion represented a further significant therapeutic advance.

While the discovery of cimetidine was based on systematic pharmacological analysis aimed at a known target, that of the first proton pump inhibitors was serendipitous, their target and mechanism of action being initially unknown, and those early days are excellently described in the first chapter of this volume. The story of the antiserotonin is often one of “what might have been,” and this is illustrated by George Sachs in Chapter 2. He points out that SmithKline & French in Philadelphia instigated a programme for the regulation of gastric secretion by inhibiting the acid pump only as a research project but with the success of the H2 antagonist programme in the United Kingdom, work was abandoned in 1973. Would history have been different if they had continued?

Chapter 1 ends on an enigmatic note, the final sentence stating that despite demonstration of clinical efficacy in the first trials of omeprazole described in 1982, “new problems were waiting around the corner”. I assume this refers to the gastric carcinoid lesions found in long term toxicity tests on rat. At the time, this discovery generated genuine concern, and some hysteria, regarding the safety of proton pump inhibitors, and it certainly delayed the development and ultimate approval of omeprazole. However, the company involved, Astra, successfully convinced the regulatory authorities that it did not represent a problem for human studies, a position vindicated by the data presented by Werner Creuzfeldt in his key chapter. Interestingly, SmithKline & French and Glaxo took a different attitude when their long acting H2 antagonists led to similar carcinoid formation and stopped their development programmes—was this the right decision?

Concerns about sustained hypergastrinaemia caused by the prolonged inhibition of acid secretion by proton pump inhibitors also prompted the search for reversible K+ competitive H/K+ATPase inhibitors, examples of which entered the clinic, but these too have been largely discredited on the grounds of efficacy and safety of available drugs.

Given the fact that omeprazole has been on the market for a decade, and in the light of its clinical and commercial success, it is surprising that this volume represents the first book to address the proton pump inhibitors, and I am pleased to say it fills that gap admirably. Lars Olbe has gathered together an excellent team of authors to produce a volume that is comprehensive (I cannot identify any aspect of the subject that is missing) and scientifically rigorous, but at the same time eminently readable for both the basic scientist and the clinician. History is dealt with, mechanisms of action made clear and understandable, clinical efficacy demonstrated, and the chapters on Helicobacter pylori bring us bang up to date. In the socioeconomic section it would have been interesting to have some numbers (in ecus) to give an idea of the savings brought about by the use of proton pump inhibitors, but maybe this is unquantifiable. Most chapters have comprehensive bibliographies and the overall presentation of the book is good, although the index is a trifle thin—well, nothing can be perfect. It is difficult to judge the potential success of the book for a broad readership when the reviewer was actively involved in the field. As most reviewers say, I will certainly have this volume on my bookshelf, and it is not because I can keep my review copy.

M E PARSONS