Liver disease and pulmonary hypertension

EDITOR—I read with interest the leading article on hepatopulmonary syndromes (Gut 2000;46:1–4). The author describes explicitly the various associations between the liver and lung disorders. Several clinical studies and autopsy findings have demonstrated a 20% higher prevalence of pulmonary hypertension in patients with advanced liver disease and portal hypertension, the histological findings of which show features similar to those seen in pulmonary hypertension from other causes. However, the underlying mechanism(s) responsible for pulmonary hypertension in these patients is not known. It has been recently hypothesised that increased circulating levels of noradrenaline (NA) or increased activity of \(u \), adrenergic receptors in the pulmonary arteries can produce excessive pulmonary vasoconstrictor and proliferative responses leading to pulmonary hypertension. It is generally believed that pulmonary hypertension results from defective hepatic elimination of a vasoconstrictive agent present in the portal blood. It has been demonstrated that increased circulating levels of noradrenaline (NA) or increased activity of \(u \), adrenergic receptors in the pulmonary arteries can produce excessive pulmonary vasoconstrictor and proliferative responses leading to pulmonary hypertension. It is generally believed that pulmonary hypertension results from defective hepatic elimination of a vasoconstrictive agent present in the portal blood. It has been demonstrated that increased circulating levels of noradrenaline (NA) or increased activity of \(u \), adrenergic receptors in the pulmonary arteries can produce excessive pulmonary vasoconstrictor and proliferative responses leading to pulmonary hypertension. It is generally believed that pulmonary hypertension results from defective hepatic elimination of a vasoconstrictive agent present in the portal blood. It has been demonstrated that increased circulating levels of noradrenaline (NA) or increased activity of \(u \), adrenergic receptors in the pulmonary arteries can produce excessive pulmonary vasoconstrictor and proliferative responses leading to pulmonary hypertension. It is generally believed that pulmonary hypertension results from defective hepatic elimination of a vasoconstrictive agent present in the portal blood. It has been demonstrated that increased circulating levels of noradrenaline (NA) or increased activity of \(u \), adrenergic receptors in the pulmonary arteries can produce excessive pulmonary vasoconstrictor and proliferative responses leading to pulmonary hypertension.

UDCA, PBC, and biochemistry, what does normal mean?

EDITOR—We read the commentary by Lindor (Gut 2000;46:8) with great interest and would like to raise the following points.

Lindor is correct. In our study patients with primary biliary cirrhosis (PBC) who initially had less abnormal liver function tests responded more favourably to ursodeoxycholic acid (UDCA) than those who had initially greater abnormal liver function values. We believe this is interesting as it is known that patients with lower abnormal liver function tests respond less favourably (for example, chronic autoimmune hepatitis (CAH) patients with glucocorticoids) and that values do not decrease in a linear manner. Furthermore, it is well known that UDCA in PBC does not cause normalisation of liver function tests in most patients, and to date there has been no extensive examination of full and incomplete responders. Only in one study was this area addressed but few liver parameters were studied and there was only a short follow-up period. Lindor states that our finding of no correlation between the percentage of UDCA in serum bile acids and biochemical response is different from other reports. However, he quotes only one study. Based on data from the literature, we reported in our paper that it is improbable that a further increase in bile acid concentrations in serum and a shift from the more hydrophobic to a more hydrophilic bile acid pool could be responsible for a complete response to UDCA therapy. Further results are awaited.

Lindor speculates that in our study the high percentage of patients with early stage PBC could have been an artefact because there was no correlation between histological stage at entry and biochemical response. We started UDCA therapy for PBC in 1978/79. In that time we had 120 patients under constant supervision and over this period of 21 years only three patients have undergone liver transplantation and two have died as a result of late stage liver disease. Furthermore, our patients underwent regular liver biopsies and some even laparoscopy. That we have seen no more deaths or complications can only be explained by the fact that patients were in the early stages of the disease and that they were treated continuously with UDCA.

Lindor says that improvement in liver histology in our patients treated with UDCA (p<0.05) differs from the overall experience in other studies. However, the discrimination between incomplete and complete responders whereas in other trials complete and incomplete responders were evaluated together and compared with an untreated group.

In addition, Lindor is surprised that the histological progression reported in our series, even in incomplete responders, was slow. Based on modelling studies of untreated patients with PBC, he started at substantially more patients developed histological progression. The difference between the studies cited by Lindor and ours is that we studied patients treated long term and not untreated patients, and it is well known that UDCA retards histological progression, as recently shown using the Markow model.

Our description of how the histological grading was performed was not sparse; it was presented carefully and in accordance with other studies. It is correct that the histological data are mentioned in a single sentence and are not tabulated or otherwise presented. But having been a pathologist myself, I am rather sceptical towards liver histology in a patchy and at times even laparoscopy. That we have considered the most important finding. This is in contrast with a statement by Lindor himself (personal communication, November 9, 1999, 5th Annual Meeting, AASLD, Dallas, Texas) where he told us that in his incomplete responders the disease progressed in 38% of patients and in full responders in only 5%. We believe our results are comparable. In our study Lindor, in full responders we found progression of the disease in 4% and in 11% of incomplete responders; in complete responders progression occasionally took place not only from one stage to the next, but to the next but one stage. As patient numbers were small in our study, we did not get percentage values. Hence it is clear from our results the significance of normalisation of liver function tests.
The most important findings in our study were that: (1) UDCA improved choleric indices in incomplete and full responders in a strictly parallel manner; (2) in incomplete responders, the curves levelled off after about 3–5 years and did not normalise; and (3) choleric indices in patients with antegrade early stages of PBC allowed differentiation between responders and incomplete responders. This parallelism of the curves may indicate that UDCA influences mainly cholestasis and that other reactions are secondary. Therefore, more potent choleric compounds or a combination of various choleric substances could further improve results in incomplete responders. As stated previously, we are about to conclude such a study and the results seem to support our hypothesis.

M LEUSCHNER
Centre of Internal Medicine, Medical Clinic II, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, D-60590 Frankfurt am Main, Germany
Email: u.leuschner@em.uni-frankfurt.de

Endoscopic gastrin test and Helicobacter pylori infection

EDITOR.—In their recent article in Gut, Iijima and colleagues concluded that reduced acid secretion in gastric ulcer patients and gastrin hypersecretion in duodenal ulcer patients were both normalised after H pylori eradication. We agree with the recovery of gastric secretory function in the former group of patients, who constantly bear chronic gastritis which greatly improves after disappearance of the germ, with subsequent restoration of gastric glandular tissue. However, we disagree with their conclusion regarding the latter group, because it is not supported by the experimental data they obtained. It is uncertain whether they found an increase in acid secretion (although not significant) in duodenal ulcer patients one month after eradication. This finding is difficult to explain, because basal gastrin levels were significantly reduced compared with those before eradication in the same patients, and others have found a rapid decrease in gastric acid output in relation to the decline of serum gastrin. The Japanese researchers state that this disparity may depend on the premature assessment of gastrin stimulated acid output (one month), because the same evaluation performed after seven months showed significantly decreased values compared with those before eradication. It must be pointed out, however, that there is a tremendous overlap between acid outputs measured before and after seven months of eradication, and those pertaining to H pylori negative controls. Moreover, the rate of decrease of acid secretion after seven months was only 23% in their study.

This reduction is very low and similar to the level of 16% seen after six months of eradication by Parente et al who themselves acknowledged in their paper that this small percentage casts doubt on the unique role of H pylori in determining the augmented acid secretion typical of duodenal ulcer. Therefore, overenthusiastic statements in this regard are unwarranted and should be attenuated.

VINCENZO SAVARINO
CARLO MANSI
Dipartimento di Medica Interna e Specialità Mediche, Università di Genova, Viale Benedetto XVI 6 16132 Genova Italy

SERGIO VIGNERI
Istituto di Medicina Interna e Geriatria, Università di Palermo, Italy

Correspondence to: Professor Savarino (email: vsvavarin@unicige.it)

REFERENCES

Losartan and renal sodium handling

Editor.—We read with great interest the paper by Girgrah et al (Gut 2000;46:114–120). Their report suggests that the sodium retention that is characteristic of preasitic cirrhosis is improved by administration of low dose losartan. This is despite the paradoxical observation of an angiotensin concentration that is significantly lower in patients compared with healthy volunteers (mean (SEM) patients 6 (2); controls 40 (10) pmol/l). Our results of angiotensin II measurements are at variance with those published by Girgrah et al (fig 1). Our study suggests that there is a progressive increase in angiotensin II concentrations with increasing severity of sodium retention. In fact, this increase in angiotensin II is evident before any measurable derangement in systemic haemodynamic characteristics. The values measured in healthy volunteers are also significantly higher than those reported in the literature. We are not sure if these differences in measured values are the result of different patient populations, differences in the method of collection of the sample (Girgrah et al—EDTA and aprotinin; Newby et al and Helmy et al—0.5 ml of 0.45% O-phenanthrolone and 1% disodium EDTA), or different assay techniques (were the samples extracted prior to the radioimmunoassay?)

The authors hypothesise that the increase in renal sodium excretion observed after administration of losartan was possibly due to its effect on intrarenal angiotensin II secretion. If this was true then there was a significant increase in plasma angiotensin II concentrations after administration of losartan.

Losartan concentrations in healthy volunteers (HV) and in patients with cirrhosis and varying degrees of severity of sodium retention (preasitic (PA) cirrhosis, diuretic responsive (DR) ascites, and refractory ascites). Our results are shown in fig 1 and the values reported by Girgrah et al are in pmol/l; 1 pmol/l is approximately equal to 1 pmol/l. Taking the molecular weight of angiotensin II as 1046.2, **p<0.01 v controls; †p>0.05 v preascitic cirrhosis and controls; ††<p>0.05 v controls, preascitic cirrhosis, and refractory ascites.

www.gutjnl.com

Figure 1 Measured angiotensin II concentrations in healthy volunteers (HV) and in patients with cirrhosis and varying degrees of severity of sodium retention (preasitic (PA) cirrhosis, diuretic responsive (DR) ascites, and refractory ascites). Our results are shown in fig 1 and the values reported by Girgrah et al are in pmol/l; 1 pmol/l is approximately equal to 1 pmol/l, taking the molecular weight of angiotensin II as 1046.2. **p<0.01 v controls; †p>0.05 v preascitic cirrhosis and controls; ††<p>0.05 v controls, preascitic cirrhosis, and refractory ascites.

Letters, Book reviews, Notes

Gut: first published as 10.1136/gut.47.4.595 on 1 October 2000. Downloaded from http://gut.bmj.com/ on April 9, 2022 by guest. Protected by copyright.
Replied to the letters by

J Hepatol, UK

1. Newby DE, Jalan R, Masumori S, et al. Periph-

eral vascular tone in patients with cirrhosis: role of the renin-angiotensin and sympathetic nerve-

2. Jalan R, Hayes PC, Newby DE, et al. Role of angio-

5. Swedberg K, Eneroth P, Kjekshus J, et al. for the CONSENSUS Trial Group. Hormone regulat-

6. Schneider AW, Kalk JF, Klein CP. Efficacy of losar-

Editor,—Jass has pointed out that the criteria we used to define microsatellite instability (MSI) status are not in accordance with the recommendations produced by the National Cancer Institute workshop on microsatellite instability.1 We would point out that the conclusion of our study and submission of our manuscript were contemporaneous with the publication of these recommendations. It is clear that the criteria we used may have resulted in some MSI-L cases being classified as MSI-H and vice versa, which is still a matter of discussion.

We based our analysis on eight dinucleotide repeats.2 The analysis categorised 14% of tumours (22 of 159) as RER+. The NCI recommendations for analysis involving greater than five markers were that MSI-H would be defined as having allelic shifts in >30–40% of dinucleotide repeats.3 This would suggest that our RER+ cohort must contain a number of MSI-L tumours but that, by the NCI criterion, the majority are likely to have been MSI-H. Therefore, while we fully concede that our study included a number of MSI-L tumours in the RER+ category, we believe that this number was small (in the context of a total patient cohort of 159) and does not completely invalidate our conclusions. Furthermore, as we have pointed out in our paper, we believe that our decision to include only patients who underwent potentially curative surgery for cancers which had penetrated beyond the bowel wall but which had not breached the peritoneal surface, spread to other organs or metastasised to lymph nodes or distant sites at the time of operation (T3, N0, M0), lends significant strength to our study in avoiding potentially confounding effects of tumour stage on microsatellite instability or other parameters.

Fibrosing colopathy in an adult caused by over use of pancreatic enzyme supplements

Editor,—We read with interest the report by Bansi and colleagues (Gut 2000;46:283–285) describing fibrosing colopathy secondary to high dose pancreatic enzyme therapy in an adult patient. Some details of the patient’s history are however missing.

In this patient with cystic fibrosis, chronic cholangitis and cholecystolithiasis required resected endoscopic retrograde cholangiopancreatography, and severe pancreatic insufficiency was the reason for high dose pancreatic enzyme supplementation. Bansi et al assume that their patient was not suffering from cystic fibrosis. As previously discussed in the commentary by Dodge in the same issue, negative results after even extensive mutation analysis of the cystic fibrosis transmembrane regulator gene cannot rule out cystic fibrosis. Furthermore, as outlined by the Cystic Fibrosis Foundation Consensus Panel, sweat testing is the standard test for diagnosis of cystic fibrosis. In patients with typical clinical symptoms but normal or borderline sweat chloride concentrations and normal genetic findings, nasal reference measurements should be performed.

The clinical symptoms of the patient described by Bansi et al are highly indicative of cystic fibrosis with exclusive involvement of the gastrointestinal tract. Moreover, the histopathology of the pancreatic tissue, showing glandular fibrosis and atrophy, is also typical of cystic fibrosis, as frequent bowel actions are seen in cystic fibrosis.

Proof of fibrosing colopathy in a patient not suffering from cystic fibrosis may contribute considerably to a better understanding of the pathogenesis of fibrosing colopathy which is still a matter of discussion.1 It would underline the aetiological impact of toxic effects of high dose pancreatic enzyme supplementation but caution against overestimating the contribution of factors possibly related to the cystic fibrosis transmembrane regulator gene mutation, such as increased intestinal absorption.2 We would therefore be interested in the patient’s sweat chloride concentration and, if normal, in the result of nasal potential difference measurements. The paper strongly advocates well thought out supplementation of pancreatic enzymes in adults who, like infants and children, are at risk of developing fibrosing colopathy.

References

1 Parsons R, Myeroff LL, Liu B, et al. Microsatellite instability and mutations of the transform

Coeliac disease and unfavourable outcome of pregnancy

Editor,—We read with interest the paper by Martellini et al (Gut 2000;46:332–335) in which the authors found that 12 of 845 (1 in 70) pregnant women were positive for antidiendymus antibody (AEA). We have conducted a similar study: we screened 450 consecutive unselected pregnant women and 125 normal non-anemic female blood donors as controls. We found that 2/450 and 0/125 women were AEA positive, respectively. Both AEA positive patients were anaemic (haemoglobin <11 g/dl). Hence in continuing the study we elected to examine only sera from anaemic pregnant women. Of a total of 216 consecutive samples, five were positive for AEA (1 in 43).

In the study of Martellini et al, 9/12 women with AEA were anaemic by these criteria. The other three were associated with good outcome. In view of this and our own findings, we agree with the authors that pregnant women should be screened for coeliac disease but we would suggest that this could be made considerably more cost effective by screening only those who are anaemic, whether pregnant of not, should be investigated for coeliac disease.

References

1 Martellini et al (Gut 2000;46:332–335) in which the authors found that 12 of 845 (1 in 70) pregnant women were positive for antidiendymus antibody (AEA). We have conducted a similar study: we screened 450 consecutive unselected pregnant women and 125 normal non-anemic female blood donors as controls. We found that 2/450 and 0/125 women were AEA positive, respectively. Both AEA positive patients were anaemic (haemoglobin <11 g/dl). Hence in continuing the study we elected to examine only sera from anaemic pregnant women. Of a total of 216 consecutive samples, five were positive for AEA (1 in 43).

In the study of Martellini et al, 9/12 women with AEA were anaemic by these criteria. The other three were associated with good outcome. In view of this and our own findings, we agree with the authors that pregnant women should be screened for coeliac disease but we would suggest that this could be made considerably more cost effective by screening only those who are anaemic, whether pregnant of not, should be investigated for coeliac disease.

References

1 Martellini et al (Gut 2000;46:332–335) in which the authors found that 12 of 845 (1 in 70) pregnant women were positive for antidiendymus antibody (AEA). We have conducted a similar study: we screened 450 consecutive unselected pregnant women and 125 normal non-anemic female blood donors as controls. We found that 2/450 and 0/125 women were AEA positive, respectively. Both AEA positive patients were anaemic (haemoglobin <11 g/dl). Hence in continuing the study we elected to examine only sera from anaemic pregnant women. Of a total of 216 consecutive samples, five were positive for AEA (1 in 43).

In the study of Martellini et al, 9/12 women with AEA were anaemic by these criteria. The other three were associated with good outcome. In view of this and our own findings, we agree with the authors that pregnant women should be screened for coeliac disease but we would suggest that this could be made considerably more cost effective by screening only those who are anaemic, whether pregnant of not, should be investigated for coeliac disease.

References

1 Martellini et al (Gut 2000;46:332–335) in which the authors found that 12 of 845 (1 in 70) pregnant women were positive for antidiendymus antibody (AEA). We have conducted a similar study: we screened 450 consecutive unselected pregnant women and 125 normal non-anemic female blood donors as controls. We found that 2/450 and 0/125 women were AEA positive, respectively. Both AEA positive patients were anaemic (haemoglobin <11 g/dl). Hence in continuing the study we elected to examine only sera from anaemic pregnant women. Of a total of 216 consecutive samples, five were positive for AEA (1 in 43).

In the study of Martellini et al, 9/12 women with AEA were anaemic by these criteria. The other three were associated with good outcome. In view of this and our own findings, we agree with the authors that pregnant women should be screened for coeliac disease but we would suggest that this could be made considerably more cost effective by screening only those who are anaemic, whether pregnant of not, should be investigated for coeliac disease.

References

1 Martellini et al (Gut 2000;46:332–335) in which the authors found that 12 of 845 (1 in 70) pregnant women were positive for antidiendymus antibody (AEA). We have conducted a similar study: we screened 450 consecutive unselected pregnant women and 125 normal non-anemic female blood donors as controls. We found that 2/450 and 0/125 women were AEA positive, respectively. Both AEA positive patients were anaemic (haemoglobin <11 g/dl). Hence in continuing the study we elected to examine only sera from anaemic pregnant women. Of a total of 216 consecutive samples, five were positive for AEA (1 in 43).

In the study of Martellini et al, 9/12 women with AEA were anaemic by these criteria. The other three were associated with good outcome. In view of this and our own findings, we agree with the authors that pregnant women should be screened for coeliac disease but we would suggest that this could be made considerably more cost effective by screening only those who are anaemic, whether pregnant of not, should be investigated for coeliac disease.

References

1 Martellini et al (Gut 2000;46:332–335) in which the authors found that 12 of 845 (1 in 70) pregnant women were positive for antidiendymus antibody (AEA). We have conducted a similar study: we screened 450 consecutive unselected pregnant women and 125 normal non-anemic female blood donors as controls. We found that 2/450 and 0/125 women were AEA positive, respectively. Both AEA positive patients were anaemic (haemoglobin <11 g/dl). Hence in continuing the study we elected to examine only sera from anaemic pregnant women. Of a total of 216 consecutive samples, five were positive for AEA (1 in 43).

A booklet a little larger than the size of a two column review may seem unimportant. But this is an exception. This publication is for patients with ulcerative colitis and such sources of information should be the concern of gastroenterologists. It has been written by Andrew Robinson, whose self management programme for patients with colitis leads to fewer outpatient visits, more rapid treatment of relapse, and improved patient satisfaction (1995; 107:14), and Anne Kennedy, a research fellow in primary care. They have been assisted by a professional writer and sensibly had the guide endorsed by the Plain English Campaign.

The guide consists of two booklets in a single plastic folder. Part One includes an overview of ulcerative colitis, tests, treatment and surgery. Part Two is an individual patient record. There is much to be commended, with detailed information helpfully summarised in colour (‘Things to Remember’), or treatment options discussed (‘Your Choice’) and anecdotes from patients that give a personal appeal. Clinical views and opinions are, on the whole, well balanced, and I could see this guide being a valuable contribution to patient information. Faults, however, qualify this commendation. The surgical subsection on ileorectal anastomosis for ulcerative colitis is wholly inappropriate and there is confusion in terminology in the section on pouch surgery. Factual errors (such as a “2% risk” of ulcerative colitis in offspring, or “5-Mercaptopurine”) and statements such as “immunosuppressants may make your baby very small and can lead to abnormalities” are simply misleading. Indeed the whole section on pregnancy is poor, with two anecdotes from patients advising cutting down or stopping maintenance therapy. It was surprising that there was no information for adolescents, or on osteoporosis, and little mention of the dilemmas of coexisting irritable bowel syndrome or the implications of differentiating ulcerative colitis from Crohn’s colitis. A brief mention of new therapies on the horizon would have suited the aim of the book, if only to highlight the importance of clinical and basic science research, which were simply ignored.

The patient record booklet is a good idea, bearing in mind that treatment with azathioprine often extends for several years. It is this sort of detail, along with the errors in the main text, that gives an impression of clinical inexperience.

Nevertheless, these points are correctable and if asked by a patient, I would broadly recommend the guide. There is nothing else like it on the market and it gives far more useful information than can be readily gleaned from the internet or from pharmaceutical sponsored freebies. I hope that the authors will stand by their commitment to update the guide every two years. This means that they should be working on the 2001 edition now.

S P L TRAVIS

When I was a fellow with Allan Walker fifteen years ago, gut development was a topic of interest to a handful of researchers worldwide. A classic review by Grand, Watkins and Torti published in Gastroenterology in 1976, and Koldovsky’s monograph Development of the Functions of the Small Intestine in Mammals and Man in 1969, brought together much of what was then known about the ontogeny of the human gut. Developmental biologists were beginning to recognise the opportunities offered by the rapidly differentiating organ to understand the interactions of genetic endowment and environmental influences in early life. The focus of much research was on the process of adaptation to milk feeding. With the survival of ever more preterm infants the function of the immature gut and its capacity to deal with enteral feeds prematurely, were questions of increasing practical concern.

I had the grand idea at that time to produce a short book bringing the field all together. But I quickly realised that not only was it growing too fast, but that a full understanding of gut development and function also required an understanding of the composition and properties of human milk and the metabolism of the newborn. The developing gastrointestinal tract, the mammary gland, and breast and gut are analogous to the uterine–placental interface.

This book goes a long way to recognising this. Each chapter (essentially a stand alone review) is written by a leading figure or group expert in its field. Together they cover the major aspects of gut development and function but, apart from a short preface, there is no overview or attempt to synthesise the book’s contents. It would be impossible for one author to write this book now. The impact of molecular biology has moved the subject from an essentially descriptive science, with some experimental work in vivo, to the level of the cell and gene. This has shifted it away from the womb, breast, or incubator and into the laboratory. This book is a valuable starting point for students or researchers wishing to get up to date with the basic biology of human gut development, but it will be of little interest to the practising neonatologist struggling to define rational approaches to feeding the preterm neonate.

Medicine is fast becoming a major branch of biology, concerned with the application, often experimentally, of novel therapies based on insights and new understanding of biological processes. However, I fear that many biological sciences are advancing so rapidly, and manipulation of genes within cells, including those of the embryo is possible, the gap between the understanding of basic biology and the biological sciences is widening rather than narrowing.

The last century saw the integration of medicine and science, and a determination to base the practice of the former on the latter. At the beginning of this century we are still struggling to define a core of knowledge, skills, and ideas to teach our medical students. The wide scope of what we currently regard as the province of medicine now includes sociology, psychology, epidemiology, etc, and the basic sciences have been squeezed. We may be making a mistake in failing to equip medical students and young doctors with a firm understanding of the “new biology”—embracing genetics, immunology, and developmental biology. This book deals with these things and, although its subject is a small part of the totality of human biology, it is dealt with in depth by recognised leaders. Ian Sanderson and Allan Walker must be congratulated for bringing their research together.

Development of the Gastrointestinal Tract is also provided as a CD-ROM, but this offers little more than the facility to read it on screen. It has no search tools, nor is it possible to cut and paste sections (for those wishing to produce a review article overnight). However, the organisation of the chapters will abolish the tedium of photocopying, and will also preserve the spine of this handsome and well produced book.

L WEAVER

To paraphrase Mark Twain, reports of the impending demise of the print media have been greatly exaggerated—a trainee can still spend hours browsing new editions in a medical bookshop and, usually during frantic preparation for higher exams while fulfilling DSM-IV criteria for anxiety disorder, part with large sums of money on illustrated texts. There also seems to have been a small explosion of abridged versions of textbooks and specialty handbooks, although some of these “handbooks” can weigh in at more than 500 pages, and entail some serious fitness training if carried around in a coat pocket.

Almost qualifying for the cruiserweight division at just over 200 pages, A Colour Handbook of Gastroenterology provides a concise, richly illustrated summary of clinical gastroenterology. Apart from oesophageal varices and ascites, hepato pathological conditions are not included. The book contains about 90 subjects organised into 10 colour coded anatomical sections. Each section starts with a short discussion of the relevant anatomy, physiology, as well as techniques for imaging, and functional assessment. Most major areas of gastroenterology are covered, although the level of detail is sometimes a little uneven. For example, seven pages are devoted to varices...
disorders of the small bowel and colon, but the less visually glamorous conditions of constipation and irritable bowel syndrome are relegated to a single page or less. The text on disease management is usually limited to a few lines on each subject, so that a trainee will still need to consult more detailed references when making treatment decisions. There is also a paucity of newer imaging techniques, including magnetic resonance imaging and endoscopic ultrasonography, two technologies that are beginning to revolutionise our approach to patients with suspected gastrointestinal disorders.

Perhaps the main attraction of this book for the visually inclined, busy trainee is that the text is structured, succinct, and richly illustrated with over 300 high quality radiographs, colour photographs, and tables. Given the increasing availability of electronic textbooks and medical images, one wonders about the future of such handbooks—although, unlike any other medical text on my computer or bookshelf, it was certainly easy to read from cover to cover. The preface states that it is directed towards junior doctors who are preparing for higher qualifications in gastroenterology and general medicine, but it will also appeal to financially solvent medical students who are keen to learn more about gastroenterology.

S P PEREIRA

NOTES

Sir Frances Avery Jones British Society of Gastroenterology Research Award 2001

Applications are invited by the Education Committee of the British Society of Gastroenterology who will recommend to Council the recipient of the 2001 Award. Applications (TWENTY COPIES) should include:

- A manuscript (2 A4 pages ONLY) describing the work conducted
- A bibliography of relevant personal publications
- An outline of the proposed content of the lecture, including title
- A written statement confirming that all or a substantial part of the work has been personally conducted in the UK or Eire.

An applicant need not be a member of the Society. The recipient will be required to deliver a 20 minute lecture at the Annual Meeting of the Society in Glasgow in March 2001. Applications (TEN COPIES) should be made to the Education Section Secretary, British Society of Gastroenterology, 3 St Andrews Place, London NW1 4LB by 1 December 2000.

Joint Meeting of Oesophageal Section of the BSG and Association of Upper GI Surgeons

There will be a joint meeting of the Oesophageal Section of the British Society of Gastroenterology and the Association of Upper GI Surgeons exploring some important issues in oesophageal disease at the Royal College of Surgeons of England, Lincoln’s Inn Fields, London WC2 on Wednesday 1 November 2000. The meeting will take the form of four debates on:

1. The place of chemotherapy in the management of cancer of the oesophagus
2. The appropriate management of high grade dysplasia
3. Identifying the role of anti-reflux surgery in the current management of gastrooesophageal reflux disease and
4. The relevance of helicobacter pyloridis in oesophageal disease.

Further information from: WJ Owen, Hon Secretary, Oesophageal Section of the BSG, Suite 406 Emblem House, London Bridge Hospital, 27 Tooley Street, London SE1. Tel: (0)20 7403 3814; fax: (0)20 7403 3814.

Gluten Sensitivity Symposium

The Gluten Sensitivity Symposium meeting, sponsored by SHS International, will be held at the Natural History Museum, London, on Friday 20 October 2000. Speakers include Professor Paul Ciclitira, Dr Tony Ellis, Dr Geoff Holmes, Professor Markku Maki, Dr Mario Hadjivassiliou, Professor Lionel Fry, Dr Gerd Michaelssoon and Professor Tom MacDonald. Further information: Debbie Jones at SHS International. Tel: +44 (0)151 228 1992; email: djones@shsint.co.uk.

Food Allergy and the Gut

The Allergy Research Foundation presents Food Allergy and the Gut, to be held at the Royal Society of Medicine, London on 29 November 2000. Further information: Philip N Goddard, Executive Secretary, The Allergy Research Foundation, PO Box 18, Aylesbury, Bucks HP22 4XJ, UK. Tel & fax: +44 (0)1296 655818.

13th European Intensive Course of Digestive Endoscopy

This course will be held in Strasbourg, France on 18 and 19 December 2000. Further information from Professor G Gay, Service de Médecine Interne J, Hôpital de Brabois, Allée du Morvan, 54511 Vandœuvre-lès-Nancy Cedex, France. Tel & fax: +33 (0)3 81 15 35 49.

Joint Meeting of the American Pancreatic Association and the International Association of Pancreatologists

This meeting will be held in Chicago, Illinois, USA on 1–5 November 2000. Symposia, posters, scientific sessions, “Pancreatology at the Millennium”. Further information: Peter A Banks, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA. Tel: +1 617 732 6747; fax: +1 617 566 0338.

36th Annual Meeting of the European Association for the Study of the Liver (EASL)

This meeting will be held in Prague, Czech Republic on 18–22 April 2001. Abstract deadline: 27 November 2000. EASL will offer 10 travel bursaries to selected young investigators and 30 to Eastern European, pending on submission of an abstract. In addition, first authors under 35 years of age, and in training, who submit abstracts will have free registration. Further information: EASL Liaison Bureau, c/o Kenes International, 17 rue du Cendrier, PO Box 1726, CH-1211 Geneva, Switzerland. Tel: +41 22 908 0488; fax: +41 22 732 2850; email: info@easl.ch; website: www.easl.com.

15th International Workshop on Therapeutic Endoscopy

This workshop will be held in Hong Kong on 5–7 December 2000. Further information: Miss Claudia Mak, Endoscopy Centre, Prince of Wales Hospital, Shatin, N.T., Hong Kong. Tel: +852 2632 2233; fax: +852 2635 0075; email: info@hkdsde.org