Neuroimmune alterations of ENS functioning

L Bueno

Introduction

Only recently has it been considered that numerous interactions between the enteric nervous system and local immunocytes are responsible for adaptive functional changes, including motility and secretion (fig 1). Several neuropeptides such as tachykinins, vasoactive intestinal peptide, somatostatin, and opioids are involved in both intrinsic and extrinsic innervation but can also affect immune reactions directly. They exert a dual role in the regulation of local and peripheral motor and secretory reflexes and affect the release of cytokines and proinflammatory mediators. On the other hand, proinflammatory mediators such as eicosanoids and cytokines may activate intrinsic neurones directly or stimulate extrinsic neurones indirectly, releasing neuropeptides which act on intrinsic neurones, smooth muscle cells, or enterocytes. These acute immediate neuroimmune reactions are often followed by long term changes in the number of receptors at the presynaptic or postsynaptic level as well as phenotypic changes of the effector cells, as evidenced for smooth muscle cells and enteric neurones which can synthesise cytokines.

Major gut targets in inflammation

There are at least three major target cells affected by the presence of inflammatory mediators: smooth muscle cells, glial cells, and neurones. Both intrinsic enteric neurones and terminals of extrinsic afferent and efferent nerves are affected (fig 2). Indeed, phenotypic changes in smooth muscle cells under the influence of proinflammatory mediators consist mainly of expression and release of cytokines.1 Up and downregulation of a number of receptors for neuromediators2 and neuropeptides3 have also been demonstrated. Indeed, the number of alpha and beta adrenergic receptors is inversely altered in the acute phase of inflammation in the guinea pig ileum. Mast cells, leukotrienes, and prostaglandins are involved in this up and downregulation of receptors, and changes in the physical properties of smooth muscle have also been demonstrated both in vitro and in vivo.

Inflammation induces neuronal phenotypic changes and affects the release of mediators in the gut intrinsic nervous system (fig 3). The myenteric plexus may secrete cytokines such as interleukin (IL) 1 and tumour necrosis factor α (TNF-α), but also interferon γ and transforming growth factor β, although the physiological role of such secretions remains unknown. The presence of cytokines in the proximity of the myenteric plexus during inflammation may affect the release of classical neurotransmitters and the number of receptors for them and for neuropeptides, as well as altering electrophysiological properties. For example, it has been shown that IL-1β, through release of leukemia inhibitory factor, de-

Abbreviations used in this paper: ACh, acetylcholine; IL, interleukin; TNF-α, tumour necrosis factor α; NAd, noradrenaline; 5-HT, 5-hydroxytryptamine.

Figure 1 Interaction between the central nervous system and the immune system. VIP, vasoactive intestinal peptide; SP, substance P; SOM, somatostatin; G, ganglion; GALT, gut associated lymphoid tissue; MLN, mesenteric lymph node. (From Ottamay.)

Department of Pharmacology INRA, Neurogastroenterology Unit, 180 Chemin de Tournefeuille BP3, 31931 Toulouse, France

L Bueno

Correspondence to:
Dr L Bueno.
lbueno@toulouse.inra.fr

www.gutjnl.com
creases the release of acetylcholine (ACh) and increases the activity or expression of inducible nitric acid synthase. TNF-α may also selectively affect noradrenergic function by reducing the release of noradrenaline (NAd) from myenteric plexus, while IL-6 may decrease or increase this NAd release, depending of its concentration. Release of other mediators may also be influenced by inflammatory mediators as altered responsiveness to histamine and 5-hydroxytryptamine (5-HT), as well as to carbachol, was observed in inflamed guinea pig ileal strips. Electrophysiological measurements have recently permitted the characterisation of changes in resting potential or in spontaneous firing, as well as in the duration and amplitude of fast excitatory postsynaptic potentials in the guinea pig jejunal myenteric plexus during T spiralis infection. From a functional point of view, the time course of inflammation development in trinitrobenezene sulphonic acid induced colitis in rats is associated with typical alterations in electrical spike activity, corresponding to a progressive increase in the duration of electrical spike bursts. These alterations are transiently suppressed by systemic administration of IL-1 receptor antagonist, suggesting that the activity of myenteric neurones controlling colonic motility during inflammation are permanently modulated by cytokines. In addition, some neuroimmune connections may ini-

Figure 2 Influence of inflammatory mediators on extrinsic afferent and efferent nerves. LT, leukotriene; PGs, prostaglandins; NGF, nerve growth factor; CGRP, calcitonin gene related peptide; 5-HT, 5-hydroxytryptamine; diHETE, dihydroxyecosatetraenoic acid.

Figure 3 Inflammation induced phenotypic changes and mediator release in the gut intrinsic nervous system. IL, interleukin; TNF-α, tumour necrosis factor α; TGF-β, transforming growth factor β; LIF, leukaemia inhibitory factor; ACh, acetylcholine; iNOS, inducible nitric acid synthase; NAd, noradrenaline.
Table 1 Pathological motility disorders and the enteric nervous system

<table>
<thead>
<tr>
<th>Type</th>
<th>Inflammatory mediators</th>
<th>Cytokines</th>
<th>Neurotransmitters</th>
<th>Neuropeptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation (acute)</td>
<td>LTB4</td>
<td>IL-1</td>
<td>5-HT (5-HT<sub>6</sub>–5-HT<sub>8</sub>)</td>
<td>BK (B<sub>1</sub>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td>SP (NK<sub>C</sub>)</td>
<td>SP (NK<sub>C</sub>)</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>PGE<sub>2</sub></td>
<td>IL-1</td>
<td>5-HT (5-HT<sub>6</sub>–5-HT<sub>8</sub>)</td>
<td>Histamine (H<sub>1</sub>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td>SP (NK<sub>C</sub>)</td>
<td>5-HT (5-HT<sub>6</sub>)</td>
</tr>
<tr>
<td>Parasitism</td>
<td></td>
<td>ACH (M<sub>3</sub>)</td>
<td>SP (NK<sub>C</sub>)</td>
<td>ACH (M<sub>3</sub>)</td>
</tr>
<tr>
<td>Septic shock</td>
<td>PGE<sub>2</sub> (EP<sub>2</sub>)</td>
<td>IL-1</td>
<td>NAD (c,A<sub>2</sub>)</td>
<td>CRF</td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td></td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

LTB₄, leukotriene B₄; IL-1, interleukin; PGE₂, prostaglandin E₂; PAF, platelet activating factor; TNF-α, tumour necrosis factor α; 5-HT, 5-hydroxytryptamine; NO, nitric oxide; NAD, noradrenaline; BK, bradykinin; ACh, acetylcholine; SP, substance P; NK, neurokinin; CRF, corticotrophin releasing factor.

Role of ENS in altered gut secretory and motor patterns

There is increasing evidence that substance P, mast cells, and nitric oxide are strongly involved in local activation of intrinsic neuromuscular function. Various neuromuscular components, including vagal afferents and local activation of the enteric nervous system, could be responsible for chronic dysfunction such as that observed in inflammatory bowel disorders such as irritable bowel syndrome.