Cannabinoids and the gastrointestinal tract

Summary
The enteric nervous system of several species, including the mouse, rat, guinea pig and humans, contains cannabinoid CB receptors that depress gastrointestinal motility, mainly by inhibiting ongoing contractile transmitter release. Signs of this depressant effect are, in the whole organism, delayed gastric emptying and inhibition of the transit of non-absorbable markers through the small intestine and, in isolated strips of ileal tissue, inhibition of evoked acetylcholine release, peristalsis, and cholinergic and non-adrenergic non-cholinergic (NANC) contractions of longitudinal or circular smooth muscle. These are contractions evoked electrically or by agents that are thought to stimulate contractile transmitter release either in tissue taken from morphine pretreated animals (naloxone) or in unpretreated tissue (γ-aminobutyric acid and 5-hydroxytryptamine). The inhibitory effects of cannabinoid receptor agonists on gastric emptying and intestinal transit are mediated to some extent by CB, receptors in the brain as well as by enteric CB, receptors. Gastric acid secretion is also inhibited in response to CB, receptor activation, although the detailed underlying mechanism has yet to be elucidated. Cannabinoid receptor agonists delay gastric emptying in humans as well as in rodents and probably also inhibit human gastric acid secretion. Cannabinoid pretreatment induces tolerance to the inhibitory effects of cannabinoid receptor agonists on gastrointestinal motility. Findings that the CB, selective antagonist/inverse agonist SR141716A produces in vivo and in vitro signs of increased motility of rodent small intestine probably reflect the presence in the enteric nervous system of a population of CB, receptors that are precoupled to their effector mechanisms. SR141716A has been reported not to behave in this manner in the myenteric plexus-longitudinal muscle preparation (MPLM) of human ileum unless this has first been rendered cannabinoid tolerant. Nor has it been found to induce “withdrawal” contractions in cannabinoid tolerant guinea pig ileal MPLM. Further research is required to investigate the role both of endogenous cannabinoid receptor agonists and of non-CB, cannabinoid receptors in the gastrointestinal tract. The extent to which the effects on gastrointestinal function of cannabinoid receptor agonists or antagonists/inverse agonists can be exploited therapeutically has yet to be investigated as has the extent to which these drugs can provoke unwanted effects in the gastrointestinal tract when used for other therapeutic purposes.

The endocannabinoid system
The plant Cannabis sativa is the source of a set of more than 60 oxygen containing aromatic hydrocarbon compounds called cannabinoids, of which Δ'-tetrahydrocannabinol (Δ'-THC) is the main psychotropic constituent. Of the other plant cannabinoids, those which have been most investigated are Δ'-THC which has similar pharmacological properties to Δ'-THC, cannabinol, which has much weaker psychotropic properties than Δ'-THC, and cannabidiol, which lacks psychotropic activity. The effects of Δ'-THC are mediated primarily by cannabinoid receptors, at least two types of which are present in mammalian tissues. These are CB, and CB, receptors and both are members of the superfamily of G protein coupled receptors. CB, receptors are found mainly on neurons in the brain, spinal cord, and peripheral nervous system, one of their functions being to modulate neurotransmitter release. The physiological roles of CB, receptors, which are expressed mainly by immune cells, are proving more difficult to establish. Endogenous ligands for cannabinoid receptors have been identified, the most important being anandamide (arachidonylethanolamide) and 2-arachidonyl glycerol (2-AG). There is evidence that anandamide, and possibly also 2-AG, are removed from the extracellular space by a carrier mediated uptake process that is present in neurons and astrocytes. Once within the cell, anandamide is hydrolysed to arachidonic acid and ethanolamine by the enzyme fatty acidamide hydrolase (FAAH). This microsomal enzyme, which is found both in neurons and in some non-neuronal tissues, can also catalyse the hydrolysis of 2-AG. The “endocannabinoids”, anandamide and 2-AG, and their receptors constitute the “endocannabinoid system”. As detailed elsewhere, a wide range of ligands for CB, and CB, receptors have now been developed. Most notable among the CB, selective ligands are the agonists (R)-(+) arachidonyl-1'-hydroxy-2'propylamide (methanandamide), arachidonyl-2'-chloretethylamide, and arachidonylecyclopropylamide, and the antagonists/inverse agonists SR141716A and LY320135. Of the CB, selective agonists, methanandamide is less susceptible than anandamide to hydrolysis by FAAH. Important CB, selective ligands include the agonists L759633, L759656, JW1-133, and HU-308, and the antagonist/inverse agonist SR144528. Inhibitors of endocannabinoid uptake and metabolism are also now available. Among these are the anandamide uptake inhibitor N-(4-hydroxyphenyl) arachidonylamide (AM404), and the potent FAAH inhibitors palmitylsulphonyl fluoride (AM374) and stearylsulphonyl fluoride (AM381). Many of the experiments described in this review have been performed with cannabinoid receptor agonists that have similar affinities for CB, and CB, receptors. Of these, the most commonly used have been WIN55212, which exhibits marginal CB, selectivity, the “classical” cannabinoid Δ'-THC, and the non-classical cannabinoid CP55940. These agonists contain chiral centres and show marked stereoselectivity in both binding and functional assays. For classical and non-classical cannabinoids, those with the same absolute stereochemistry as (−)-Δ'-THC at 6a and 10a (6aR, 10aR) have the greater activity (the (−)-enantiomers). However, for WIN55212, the R-(+) enantiomer is the more active. There is now good evidence for the presence of CB, and CB, receptors in the gastrointestinal tract. This article summarises this evidence and also considers what is currently known about the precise location of these receptors and the effects they mediate.

Abbreviations used in this paper: MPLM, myenteric plexus-longitudinal muscle preparation; Δ'-THC, Δ'-tetrahydrocannabinol; 2-AG, 2-arachidonyl glycerol; FAAH, fatty acid amide hydrolase; AM404, N-(4-hydroxyphenyl) arachidonylamide; L-NAME, N-nitro-L-arginine methyl ester; AER, ascending enteric reflex; NANC, non-adrenergic non-cholinergic; PMSF, phenylmethanesulphonyl fluoride.
Cannabinoids inhibit electrically evoked contractions of isolated small intestine

The ability of cannabinoids to inhibit electrically evoked contractions of isolated preparations of small intestine mounted in organ baths and the underlying mechanisms have been the subject of many investigations over the past 30 years. These have involved experiments, mainly with guinea pig tissue, in which contractions have been produced by electrical stimulation of prejunctional neurones rather than by direct stimulation of intestinal smooth muscle.

Among the first of these experiments were those described by Gill and colleagues. They investigated the response of the guinea pig isolated ileum to Δ⁹-THC or to various subfractions of petrol soluble and petrol insoluble fractions of cannabis resin. From these studies, it was concluded that the inhibition of electrically evoked contractions of resting ileum produced by these subfractions was of a stereoselective nature and that cannabinoid receptor agonists show high potency and remarkable stereoselectivity as inhibitors of electrically evoked contractions of isolated whole ileum or of MPLM of the ileum (table 1).

- Cannabinoid receptor agonists show high potency and remarkable stereoselectivity as inhibitors of electrically evoked contractions of isolated whole ileum or of MPLM of the ileum (table 1).
- As is to be expected for a receptor mediated response, the ability of particular cannabinoid receptor agonists to inhibit electrically evoked contractions of preparations of human or guinea pig ileum is concentration dependent and the relationship between log concentration and response is sigmoid in nature.
- The rank order of potencies of cannabinoids for inhibition of electrically evoked contractions of guinea pig MPLM or whole ileum correlates well with that of their psychotropic potencies and of their affinities for specific CB, binding sites in brain tissue (see also Pertwee).
- Using a quantitative autoradiographic binding technique, Lynn and Herkenham demonstrated that Peyer's patches from rat intestinal tract contain high affinity specific binding sites for [³H]CP55940 and that the affinities of a selected range of cannabinoids for these binding sites correspond reasonably closely to their affinities for [³H]CP55940 binding sites in rat brain. They also found [³H]CP55940 to be more potently displaced from its Peyer's patch binding sites by [(-)-Δ⁹-THC or CP55940 than by the (+)-enantiomers of these cannabinoids or by cannabidiol, each of which has relatively low cannabinoid receptor affinity. Although Lynn and Herkenham were able to visualise [³H]CP55940 binding sites in Peyer's patches located in rat jejunum, ileum, and rectum by autoradiography, they did not observe such binding sites elsewhere in these regions of the intestine or indeed in the rat stomach, duodenum, caecum, or colon. These negative findings may be an indication that cannabinoid receptors in the gastrointestinal tract are localised in discrete regions such as nerve terminals that form only a small part of the total tissue mass. Thus using the more sensitive technique of immunohistochemistry, it has been possible to visualise CB receptor immunoreactivity on neurones both in rat and guinea pig small intestine and in rat embryo digestive tract. In addition, saturation and displacement binding assays with membrane fractions obtained from guinea pig MPLM homogenates have revealed the presence of specific binding sites with properties similar to those of guinea pig brain CB receptors.
- Polymerase chain reaction performed on cDNA prepared from RNA isolated from whole small intestine of guinea pig has revealed the presence of CB1 and CB2 or CB 2-like mRNA was detected in guinea pig ileum, and rectum by autoradiography, they did not observe such binding sites elsewhere in these regions of the intestine or indeed in the rat stomach, duodenum, caecum, or colon. However, CB, but not CB, or CB-like mRNA was detected in guinea pig MPLM. CB mRNA has also been detected in human stomach and colon and all along the digestive tract of rat embryo.
- Cannabinoid receptor agonist induced inhibition of electrically evoked contractions of guinea pig or human ileum.

Cannabinoid receptor agonist induced inhibition of electrically evoked contractions of guinea pig or human ileum

- Cannabinoid receptor agonist induced inhibition of electrically evoked contractions of guinea pig or human ileum.

Table 1 Stereoselective effects of cannabinoids on electrically evoked contractions of guinea pig isolated ileum or of the myenteric plexus-longitudinal muscle preparation (MPLM) of guinea pig ileum

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Cannabinoid</th>
<th>Concentration</th>
<th>Effect on twitch amplitude</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supramaximal stimulation of whole ileum at 0.1 Hz (ethanol)</td>
<td>[(-)-Δ⁹-THC]</td>
<td>79.5 nM</td>
<td>Inhibition</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(+)-Δ⁹-THC</td>
<td>318 nM</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+)-11-OH-Δ⁹-THC</td>
<td>ca. 3 nM upwards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+)-11-OH-Δ⁹-THC</td>
<td>61 nM</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Stimulation of whole ileum at 0.1 Hz (ethanol)</td>
<td>[(-)-Δ⁹-THC]</td>
<td>318 nM</td>
<td>Inhibition</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(+)-Δ⁹-THC</td>
<td>61 nM</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.2 Hz (Cremophor EL)</td>
<td>[(-)-Δ⁹-THC]</td>
<td>125 nM</td>
<td>Inhibition</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(+)-Δ⁹-THC</td>
<td>3.1 nM</td>
<td>Inhibition</td>
<td></td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.1 Hz (Twee 80)</td>
<td>HU-210</td>
<td>1.4 nM</td>
<td>Inhibition</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>HU-211</td>
<td>316 nM</td>
<td>Inhibition (316 nM)</td>
<td></td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.1 Hz (Twee 80)</td>
<td>CP55940†</td>
<td>125 nM</td>
<td>Inhibition</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>CP56667</td>
<td>125 nM</td>
<td>Inhibition</td>
<td></td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.1 Hz (Twee 80)</td>
<td>(+)-WIN55212</td>
<td>5.6 nM</td>
<td>Inhibition</td>
<td>13-14</td>
</tr>
<tr>
<td></td>
<td>(+)-WIN55212</td>
<td>1 µM</td>
<td>Negligible</td>
<td></td>
</tr>
</tbody>
</table>

*Concentration producing 50% inhibition of the twitch response. Cannabinoid vehicle used is shown in parentheses.
†CP55940 has also been found to be more potent than CP56667 as a twitch inhibitor of mouse MPLM.
CP56667 is the (+)-enantiomer of CP55940 and HU-211 is the (-)-enantiomer of HU-210 (dimethylheptyl-11-hydroxy-Δ⁴-tetrahydrocannabinol).
The samples of (+)-Δ⁹-THC and (+)-Δ⁹-THC used probably contained 5-10% of the corresponding (-)-enantiomer.
Cannabinoids and the gastrointestinal tract

Egan and colleagues have shown Δ⁹-THC to decrease the output of acetylcholine from unstimulated tissues. The effect of Δ⁹-THC was greatest when the initial spontaneous release of acetylcholine was high, suggesting that the cannabinoid was acting to reduce acetylcholine output to a basal level. This hypothesis is supported by the more recent finding that some concentrations of (+)-WIN55212 and CP55940 that inhibit electrically evoked contractions of guinea pig MPLM also inhibit electrically evoked acetylcholine release. There is also a brief report that acetylcholine release from guinea pig MPLM evoked by electrical stimulation or by added reserpine or 5-hydroxytryptamine can be decreased by anandamide. Unexpectedly, although cannabidiol has generally been found not to inhibit electrically evoked contractions of guinea pig ileum, there is one report that cannabidiol can reduce spontaneous acetylcholine output from strips of guinea pig ileum and that it elicits this response with greater potency than Δ⁹-THC.

CB₁ receptors in guinea pig MPLM are located prejunctionally

There is good evidence that the CB₁ receptors that apparently mediate inhibition of electrically evoked contractions of guinea pig MPLM are located prejunctionally on a subset of myenteric neurones of guinea pig small intestine that serve as the final motor neurones to longitudinal muscles. This is summarised below.

• CB₁ receptors mediate inhibition of evoked acetylcholine release

Evidence that CB₁ receptors mediate inhibition of electrically evoked contractions of small intestine or MPLM by decreasing evoked release of acetylcholine can be summarised as follows.

• Concentrations of a cannabis extract ("fraction IIc") or of Δ⁹-THC, 11-hydroxy-Δ⁹-THC, (+)-WIN55212, CP55940, or anandamide that inhibit electrically evoked contractions of guinea pig whole ileum or preparations of longitudinal (MPLM) or circular smooth muscle of guinea pig or human ileum have been found not to reduce the contractile response of these preparations to added acetylcholine, carbachol, substance P, or histamine, each of which acts directly on smooth muscle. On the other hand, 11-hydroxy-Δ⁹-THC, Δ⁹-THC, and l-nantradol have been shown to reduce the contractile response of guinea pig whole ileum or MPLM to 5-hydroxytryptamine or γ-aminobutyric acid, drugs that act prejunctionally to increase acetylcholine release. There is also a report that the ability of 11-hydroxy-Δ⁹-THC to inhibit electrically evoked contractions of strips of guinea pig ileum can be blocked by enhancing extracellular concentrations of acetylcholine by inhibiting acetylcholinesterase with phystostigmine.

It is noteworthy however that Layman and Milton found that submicromolar concentrations of Δ⁹-THC inhibited both electrically induced contractions of guinea pig ileum and contractions induced by administration of acetylcholine or histamine. These effects of Δ⁹-THC on acetylcholine and histamine induced contractions were probably non-specific in nature and unrelated to inhibition of the twitch response as cannabidiol was no less potent than Δ⁹-THC in inhibiting the responses to acetylcholine and histamine but did not inhibit the electrically evoked contractions.

• CB₁, receptors are negatively coupled through G proteins to adenylate cyclase and calcium channels. Consequently, the observations that (+)-WIN55212 induced inhibition of electrically evoked contractions of guinea pig MPLM can be enhanced by lowering the external calcium concentration and attenuated by elevating the external calcium concentration or by exposing the tissue to forskolin, 8-bromo-cAMP, or the phosphodiestereas inhibitor 3-isobutyl-1-methylnxanthine, provide further evidence that this inhibitory effect is mediated by CB₁ receptors.

• Certain types of non-cannabinoid receptors can also mediate inhibition of electrically evoked twitches of guinea pig MPLM. As these include opioid and α₁ adrenergic receptors, it is noteworthy that selective antagonists of one or other of these receptor types do not block or reverse the inhibitory effect of cannabinoid receptor agonists in this tissue. It has also been found that (+)-WIN55212 induced inhibition of electrically evoked contractions of circular smooth muscle of guinea pig ileum is unaffected by naloxone or by the nitric oxide synthase inhibitor, N⁶-nitro-L-arginine methyl ester (l-NAME).

• Enteric CB₁ receptors mediate inhibition of evoked acetylcholine release

Concentrations of cannabinoid receptor agonists (+)-WIN55212 and CP55940 can potently reduce the amplitudes of evoked fast excitatory synaptic potentials of myenteric neurones of the S cell type measured using conventional intracellular recording techniques. This inhibitory effect on cholinergic synaptic transmission was found to be dose related and stereoselective and to be reversible by SR141716A (1 µM). Some S neurones were insensitive to (+)-WIN55212, suggesting that not all such neurones bear cannabinoid receptors. (+)-WIN55212 also reduced the amplitude of slow (NANC) excitatory synaptic potentials of myenteric neurones of the S cell type evoked by repetitive focal stimulation of interganglionic nerve fibres.

Buckley and colleagues have reported the presence of CB₁ mRNA in the myenteric and submucosal plexus of rat embryo digestive tract. In experiments with affinity purified polyclonal antibody directed against the N terminal residues of the rat cloned CB₁ receptor they also detected CB₁ immunostaining at these sites. Using the same antibody to visualise the cellular distribution of CB₁ receptors in adult guinea pig and rat MPLM by scanning confocal microscopy, Anavi-Goffer and colleagues have confirmed the presence of CB₁ receptors on neurones of the myenteric plexus. Their results also support a close association of the CB₁ receptors with cholinergic neurones of the myenteric plexus. In the guinea pig, punctate CB₁ labelling was observed on fine nerve fibres within myenteric ganglia. CB₁ positive fibres were seen to surround choline acetyltransferase containing ganglionic soma that were presumably the cell bodies of cholinergic neurones. CB₁ receptor staining in

MPLM or of strips of circular smooth muscle of guinea pig ileum are prevented or reversed by SR141716A at concentrations well below 1 µM but not by SR144528. Dissociation constant values obtained for SR141716A against (+)-WIN55212 or CP55940 correspond closely to the dissociation constant of SR141716A for displacement of [³H]CP55940 from specific binding sites on guinea pig brain membranes or from human CB₁ receptors.

Experiments with guinea pig ileum or MPLM have shown Δ⁹-THC to decrease the output of acetylcholine from unstimulated tissues. The effect of Δ⁹-THC was greatest when the initial spontaneous release of acetylcholine was high, suggesting that the cannabinoid was acting to reduce acetylcholine output to a basal level. This hypothesis is supported by the more recent finding that some concentrations of (+)-WIN55212 and CP55940 that inhibit electrically evoked contractions of guinea pig MPLM also inhibit electrically evoked acetylcholine release. As is to be expected for a CB₁ receptor mediated response, the ability of (+)-WIN55212 and CP55940 to inhibit electrically evoked release of acetylcholine from guinea pig MPLM is not shared by (−)-WIN55212 and can be prevented or reversed by SR141716A. The dissociation constant of SR141716A for antagonism of (+)-WIN55212 is not far removed from its dissociation constant for displacement of [³H]CP55940 from guinea pig brain or human CB₁ receptors.

CB₁ receptors in guinea pig MPLM are located prejunctionally

There is good evidence that the CB₁ receptors that apparently mediate inhibition of electrically evoked contractions of guinea pig MPLM are located prejunctionally on a subset of myenteric neurones of guinea pig small intestine that serve as the final motor neurones to longitudinal muscles. This is summarised below.

• The cannabinoid receptor agonists (+)-WIN55212 and CP55940 can potently reduce the amplitudes of evoked fast excitatory synaptic potentials of myenteric neurones of the S cell type measured using conventional intracellular recording techniques. This inhibitory effect on cholinergic synaptic transmission was found to be dose related and stereoselective and to be reversible by SR141716A (1 µM). Some S neurones were insensitive to (+)-WIN55212, suggesting that not all such neurones bear cannabinoid receptors. (+)-WIN55212 also reduced the amplitude of slow (NANC) excitatory synaptic potentials of myenteric neurones of the S cell type evoked by repetitive focal stimulation of interganglionic nerve fibres.

Buckley and colleagues have reported the presence of CB₁ mRNA in the myenteric and submucosal plexus of rat embryo digestive tract. In experiments with affinity purified polyclonal antibody directed against the N terminal residues of the rat cloned CB₁ receptor they also detected CB₁ immunostaining at these sites. Using the same antibody to visualise the cellular distribution of CB₁ receptors in adult guinea pig and rat MPLM by scanning confocal microscopy, Anavi-Goffer and colleagues have confirmed the presence of CB₁ receptors on neurones of the myenteric plexus. Their results also support a close association of the CB₁ receptors with cholinergic neurones of the myenteric plexus. In the guinea pig, punctate CB₁ labelling was observed on fine nerve fibres within myenteric ganglia. CB₁ positive fibres were seen to surround choline acetyltransferase containing ganglionic soma that were presumably the cell bodies of cholinergic neurones. CB₁ receptor staining in...
guinea pig MPLM was also closely associated with glutamic acid decarboxylase containing fibres and hence presumably with GABAergic fibres. In rat MPLM, punctate labelling was observed within myenteric ganglia only on cell bodies. The CB1 receptor staining was associated with choline acetyltransferase containing ganglionic soma, indicating rat CB2, to be expressed by some cholinergic neurons. However, GABAergic fibres seemed to be completely dissociated from CB2 receptor labelling. In MPLM of both species, CB2 receptor staining was associated with synaptic labelling.

- Electrically evoked contractions of guinea pig and human MPLM that are susceptible to inhibition by cannabinoid receptor agonists can also be more or less completely abolished by 0.1, 0.2, or 1 µM tetrodotoxin, a specific Na+ channel blocker.26–30 This finding implies that cannabinoids inhibit contractions caused by contractile transmitter release from neurons rather than by direct electrical stimulation of intestinal smooth muscle. It is therefore at least consistent with the hypothesis that cannabinoids inhibit electrically evoked contractions of MPLM by acting at presynaptic sites.

- The presence of CB2 receptors on intestinal prejunctional neurons is also supported by the evidence that CB2 receptors in the small intestine mediate inhibition of evoked neuronal release of acetylcholine (see above).

Cannabinoid receptor agonists inhibit peristalsis in guinea pig isolated ileum
Izzo and colleagues37 have recently demonstrated the effects of (+)-WIN55212 and CP55940 on peristalsis induced in segments of guinea pig isolated ileum by continuous intraluminal infusion of Krebs solution. These cannabinoids affected both the initial “preparatory phase” of peristalsis, in which the longitudinal muscle contracts in response to infusion of fluid, and the subsequent “emptying phase”, in which the circular muscle contracts towards the aboral end of the intestine in a wave-like manner. More specifically, WIN55212 and CP55940 increased threshold pressure and volume for triggering peristalsis and decreased both longitudinal muscle reflex contraction occurring during the preparatory phase and resistance of the intestinal wall to the infused liquid (compliance), measured at the end of this phase. They also decreased maximal ejection pressure, measured during the emptying phase. All of these effects of (+)-WIN55212 and CP55940 were completely counteracted by 100 nM SR141716A but not by 100 nM SR144528, suggesting they were CB2 mediated.

Similarly, Heinemann and colleagues38 have reported that methanandamide can produce a concentration related inhibition of distension induced propulsive motility of luminaly perfused strips of guinea pig isolated ileum. This effect could be attenuated by SR141716A (1 µM), by the nitric oxide synthase inhibitor L-NAME, and by apamine, an inhibitor of small conductance calcium dependent potassium channels that in guinea pig small intestine are thought to mediate fast neuromuscular transmission from inhibitory motor neurones. However, it was not affected by naloxone or by the P2 ATP receptor antagonists suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid. Heinemann and colleagues38 also found that under conditions in which peristalsis is thought to be maintained by endogenous tachykinins (blockade of cholinergic transmission with atropine or hexamethonium plus restoration of peristalsis with naloxone), the ability of methanandamide to inhibit propulsive peristalsis and AER contractions was not only preserved but enhanced. This finding prompted the proposal that, when activated, CB2 receptors of guinea pig ileum suppress propulsive peristalsis and AER contractions by inhibiting both cholinergic and non-cholinergic transmission. Evidence for this hypothesis has also been obtained by Izzo and colleagues39 in experiments with a circular muscle preparation. They found (+)-WIN55212 to inhibit cholinergic and NANC contractions evoked in this preparation by electrical stimulation and that both these inhibitory effects were potently antagonised by SR141716A. Similar results were obtained with anandamide. Interestingly, apamin reduced the inhibitory effect of (+)-WIN55212 on cholinergic contractions, pointing to cannabinoid induced activation of ampin sensitive inhibitory neurones.38 However, (+)-WIN55212 induced inhibition of NANC contractions was not modified by apamin. These NANC contractions were most likely produced by activation of postganglionic tachykinin NK3 receptors as they were markedly attenuated by the combined administration of NK3 antagonists but not by hexamethonium.25 On the other hand, (+)-WIN55212 induced inhibition of cholinergic and NANC contractions of circular muscle was most probably not mediated by nitric oxide or opioids as this inhibitory effect was not affected by L-NAME or naloxone.26

Cannabinoids inhibit intestinal motility in the whole animal
In line with the ability of cannabinoid receptor agonists to inhibit peristalsis and electrically evoked acetylcholine release and smooth muscle contractions in isolated segments of guinea pig ileum or MPLM are several reports that passage of an orally administered non-absorbable marker through the upper digestive tract can be inhibited by cannabinoids in rats39–41 and mice (table 2). Although cannabinoids delay gastric emptying26 (see below), their inhibitory effect on gastrointestinal transit seems to depend at least in part on cannabinoid induced reductions in intestinal motility as the effect has also been observed in rat experiments in which the transit marker was applied intraduodenally.39 As is to be expected from the in vitro data, the inhibitory effect of cannabinoids on intestinal transit seems to be CB2 receptor mediated. Thus the effect is produced in a dose related fashion by the established CB2 receptor agonists Δ9-THC, Δ2-THC, nabilone, cannabidiol, (+)-WIN55212, CP55940, and anandamide but not by the inactive (−)-enantiomer of WIN55212 or by cannabidiol40 44 47–51 and the effect of some CB2 agonists on intestinal transit has been found to be susceptible to antagonism by SR141716A but not by SR14452841 46–51 (see also table 2) or by naloxone.30 40

Other reported in vivo signs of cannabinoid induced inhibition of intestinal motility are a relaxant effect on the ileum of the anaesthetised cat observed in situ in response to two analogues of Δ9-THC.42 43 A decrease in mouse faecal water content and in intraluminal fluid accumulation in rat small intestine induced by (+)-WIN55212,40 an inhibitory effect on faecal output, produced for example by Δ9-THC in rats31–33 and by (+)-WIN55212 and anandamide in mice,50 51 and suppression by (+)-WIN55212 and cannabidiol of croton oil induced diarrhoea as measured by...
Table 2 Effect of cannabinoids on transit of an orally administered non-absorbable marker through the small intestine of fasted mice

<table>
<thead>
<tr>
<th>Marker</th>
<th>Cannabinoid</th>
<th>Route and time of administration</th>
<th>Dose or potency</th>
<th>Effect on transit*</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charcoal (30 min)</td>
<td>Δ⁹-THC</td>
<td>sc immediately after marker</td>
<td>10 or 30 mg/kg</td>
<td>−34%</td>
<td>42 43</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ⁹-THC</td>
<td>ip at 45 min before marker</td>
<td>LED=5 mg/kg</td>
<td>−31.5%</td>
<td>44</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>CBN</td>
<td>po at 45 min before marker</td>
<td>LED=10 mg/kg</td>
<td>−15.8%</td>
<td>Inhibition 45</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ⁹-THC</td>
<td>ip at 45 min before marker</td>
<td>ED₅₀=20 mg/kg</td>
<td>Inhibition</td>
<td>45</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ⁹-THC</td>
<td>po at 45 min before marker</td>
<td>ED₅₀=13.5 mg/kg</td>
<td>Inhibition</td>
<td>45</td>
</tr>
<tr>
<td>Radioactive marker (35 min)</td>
<td>Δ⁹-THC</td>
<td>iv, po or icv before marker</td>
<td>ED₅₀=1.3 mg/kg (iv)</td>
<td>Inhibition</td>
<td>39</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>AEA†</td>
<td>sc at 60 min before marker</td>
<td>ED₅₀=2.5 mg/kg</td>
<td>Inhibition</td>
<td>48</td>
</tr>
<tr>
<td>Carmine (20 min)</td>
<td>(+)-WIN†</td>
<td>ip at 20 min before marker</td>
<td>LED=0.25 mg/kg</td>
<td>ca. −30%</td>
<td>49</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>(+)-WIN†</td>
<td>ip at 20 min before marker</td>
<td>LED=0.3 mg/kg</td>
<td>−34%</td>
<td>50</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>CBN</td>
<td>icv at 20 min before marker</td>
<td>ED₅₀=169 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>(+)-WIN†</td>
<td>icv at 20 min before marker</td>
<td>ED₅₀=2700 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>CBN†</td>
<td>ip at 20 min before marker</td>
<td>ED₅₀=104 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>(+)-WIN†</td>
<td>iv at 20 min before marker</td>
<td>ED₅₀=68 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>CBN</td>
<td>iv at 20 min before marker</td>
<td>ED₅₀=1681 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
</tbody>
</table>

*Compared with vehicle control.
†Antagonised by SR141716A at 1 mg/kg sc. ⁰LED=0.62 mg/kg ip. ⁰.⁰3 mg/kg ip. ⁹16 nmol/mouse ip. ¹Experiments performed with mice exhibiting croton oil induced diarrhoea.

Cannabinoids delay gastric emptying in the whole animal

Shook and Burks found that intravenous administration of Δ⁹-THC inhibited the transit of a non-absorbable orally administered radioactive marker from mouse or rat stomach to small intestine, its potency in these two species being approximately the same. In mice, Δ⁹-THC was also active after intracerebroventricular injection. Other cannabinoids that have been reported to delay gastric emptying of an orally administered marker in rats or mice are WIN55212, CP55940, cannabinol, and nabilone. There is also evidence that in rats, intravenous Δ⁹-THC can reduce both the contractile activity of stomach (and duodenum) and intragastric pressure. It has been proposed by Krowicki and colleagues that Δ⁹-THC produces its inhibitory effects on the stomach partly by acting on the dorsal vagal complex of the hind brain to modulate vagal (parasympathetic) outflow to gastric smooth muscle. This hypothesis is based on their observations that the inhibitory effect of Δ⁹-THC on stomach motility and intragastric pressure can be abolished by bilateral vagotomy at the midcervical level and by hexamethonium but not by transection of the cervical spinal cord. Δ⁹-THC may also alter gastric motility by acting directly on the vagus nerves and on the gastrointestinal myenteric plexus.

It is likely that cannabinoids alter gastric motility by acting through CB₂ receptors. Thus the inhibitory effects of (+)-WIN55212, CP55940, and cannabinol on gastric emptying in rats and of Δ⁹-THC on rat gastric contractile activity and intragastric pressure can be prevented by SR141716A. Moreover, SR144528 does not antagonise (+)-WIN55212 or cannabinol induced inhibition of gastric emptying in rats. It has also been found that the effect of Δ⁹-THC in mice on gastric emptying (and small bowel transit) is not blocked by naloxone. By themselves neither SR141716A nor SR144528 significantly affected gastric emptying in rats. However, SR141716A was unexpectedly found to share the ability of Δ⁹-THC to reduce rat intragastric pressure.

In agreement with animal data, McCallum and colleagues have found Δ⁹-THC to delay gastric emptying in...
human subjects fasted for eight hours when this was moni-
tored for two hours after ingestion of a radiolabelled solid test meal and Δ'-THC (10 mg/m²) or placebo was admin-
istered one hour before the meal. The trial was randomised
double blind, and was performed with nine male and
four female experienced cannabis users. In contrast, Bat-
eman60 found that gastric emptying, monitored by a real
time ultrasound technique, was unaffected by Δ'-THC in
seven fasted cannabis naive male volunteers that had con-
sumed 500 ml of warm orange cordial 30 minutes after
injection. The doses of Δ'-THC used in this study (0.5 and
1 mg intravenously) increased pulse rate and produced
cannabis-like psychomotor and psychological effects.61

Cannabinoids inhibit gastric acid secretion
Coruzzi and colleagues62 found that (+)-WIN55212 (0.5–2
mg/kg intravenously) markedly inhibited pentagastrin
stimulated gastric acid secretion in urethane anaesthetised
rats without affecting basal secretion. It is likely that this
effect was mediated by CB, receptors. Thus no such effect
was observed in response to (−)-WIN55212 or to the CB3
selective agonist JWH-015, and (+)-WIN55212
was antagonised by SR141716A and LY320135 but not by
SR144528. By themselves, neither SR141716A nor
LY320135 affected either basal or pentagastrin stimulated
gastric acid secretion. There has also been a report that in
a rat isolated stomach preparation, histamine induced but
not basal gastric acid secretion is inhibited by Δ'-THC at
the rather high concentration of 20 µM.62 This effect was
essentially abolished by cyclic AMP but was unaffected by
propranolol. In view of these findings it is noteworthy that
Nalin and colleagues63 found a link between the self
reported heavy smoking of cannabis by 90 human subjects
(more than two days per week) and low gastric acid output.
Gastric acid production was measured at least one day after
admission into a quarantined study ward in which canna-
bis (or alcohol) consumption was not allowed. Interest-
ingly, it was also found in this investigation that ingestion of
bacterial pathogens precipitated more voluminous diarr-
hoea in heavy users of cannabis than in light users. Possi-
bly this was because the lower acid content of the stomachs
of the heavy users allowed more of the ingested pathogens
to survive gastric transit.63 Another consequence of the
inhibitory effect of cannabinoids on gastric acid secretion
could be the prevention of gastric ulcer formation. Indeed,
gastric ulcer formation was induced in fasted rats measured six hours
after ligation of the pylorus (Shay rat test) was found to be
markedly reduced by Δ'-THC (100 mg/kg subcutaneously
or orally) when this was administered 30 minutes before
ligation.64

The endocannabinoid system of the digestive tract is
tonically active
ISOLATED GUINEA PIG ILEUM
When administered by itself at concentrations of 10 nM or
above, SR141716A has been found to increase the ampli-
tude of both electrically evoked contractions of guinea pig
MPLM and cholinergic and NANC contractions elicited by
electrical field stimulation of a circular smooth muscle
preparation of guinea pig ileum.14 26 65 That SR141716A
was acting as a cholinesterase inhibitor in these tissue
preparations is unlikely as it did not potentiate contractions
produced by added acetylcholine. SR141716A has also
been reported to augment electrically evoked acetylcholine
release from guinea pig MPLM (in the presence of
physostigmine)14 and to increase both distension induced
ascending enteric reflex contraction of segments of ideal
circular muscle66 and maximal ejection pressure in isolated
strips of guinea pig whole ileum exhibiting peristalsis in
response to continuous intraluminal infusion of Krebs
solution.17 These effects of SR141716A on acetylcholine
release, evoked contractions and peristalsis, are opposite in
direction to those produced in the same assay systems by
cannabinoid receptor agonists.

One possible explanation for the production of such
"inverse cannabimimetic effects" is that these intestinal
preparations are releasing endocannabinoid(s) onto
cannabinoid receptors and that SR141716A is reducing the
resulting background tone by occupying these receptors.
Another possible explanation springs from evidence that
SR141716A is an inverse agonist rather than a "pure" or
"silent" antagonist (see Pertwee). According to this expla-
nation it is assumed that cannabinoid receptors can exist in
a "precoupled" state and that inverse agonists can reduce
the extent of this precoupling. Consistent with the first of
these hypotheses is evidence that the guinea pig ileum con-
tains the anandamide and 2-AG metabolising enzyme
FAAH, and also a mechanism for endocannabinoid
uptake. Thus the presence of FAAH has been demon-
strated in rat intestine66-68 and there are reports that certain
effects of anandamide on guinea pig MPLM can be poten-
tiated by the anandamide uptake inhibitor AM404, and by
a general protease inhibitor phenylmethylsulphonyl fluo-
ride (PMSF) that is known to inhibit FAAH. More specifi-
cally, experiments with guinea pig MPLM have shown
PMSF to potentiate anandamide induced inhibition of
electrically evoked contractions69 and AM404 to potentiate
anandamide induced inhibition of resiniferatoxin evoked
acetylcholine release.69 However, these data should be
interpreted with caution as there is now evidence that
AM404 shares the ability of resiniferatoxin to activate
vanilloid receptors.69 70 It is also noteworthy that the endo-
cannabinoid 2-AG was first isolated from canine small
intestine.71

While there is evidence for the presence in guinea pig
ileum of anandamide uptake and metabolising mecha-
nisms, there is none that anandamide is released when this
tissue is electrically stimulated. Thus not all ligands capa-
bale of antagonising CB, mediated inhibition of electrically
evoked contractions of guinea pig MPLM share the ability
of SR141716A to enhance such contractions when admin-
istered alone.67 77 78 This effect was shown by e.g. SR141716A
and, when added by itself, PMSF does not mimic the inhibitory effect of anandamide on
electrically evoked contractions of guinea pig MPLM.71
Moreover, while the endocannabinoid 2-AG has been
detected in the small intestine of dog, there is no evidence
for the presence of anandamide in the digestive tract.71 It
seems likely therefore that the ability of SR141716A to
produce inverse cannabimimetic effects in guinea pig ileum
depends primarily on the putative inverse agonist proper-
ties of this ligand and reflects the presence in this tissue of
CB, receptors in a precoupled state.

Although SR141716A enhances electrically evoked con-
tractions of guinea pig MPLM, no such effect has been
observed in human MPLM.80 Nor has SR141716A been
found to produce effects opposite in direction to those of
endocannabinoid receptor agonists on threshold pressure or
volume for triggering peristalsis or on longitudinal muscle
reflex contraction, intestinal wall compliance, or propulsive
motility measured during peristalsis in segments of guinea
pig isolated ileum.37 38

INTESTINAL MOTILITY IN THE WHOLE ANIMAL
Administration of SR141716A by itself, sometimes at
doses slightly higher than those sufficient to antagonise
cannabinoid receptor agonists, has been found to stimulate
propulsion of non-absorbable markers through rat80 or
mouse intestine (table 3). That this is a reflection of the
inverse agonist properties of SR141716A rather than of
ongoing release of an endogenous cannabinoid receptor
Table 3 Effect of SR141716A on transit of an orally administered non-absorbable marker through the small intestine of fasted mice

<table>
<thead>
<tr>
<th>Marker</th>
<th>Route and time of administration</th>
<th>Dose or potency</th>
<th>Effect on transit*</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charcoal (20 min)</td>
<td>sc before marker, ip at 20 min</td>
<td>1 mg/kg</td>
<td>+17.5% +48</td>
<td>48</td>
</tr>
<tr>
<td>Carmine (20 min)</td>
<td>ip at 20 min, before marker</td>
<td>LED=1, 25 mg/kg</td>
<td>ca. +33%</td>
<td>49</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>ip at 20 min, before marker</td>
<td>LED=1 mg/kg</td>
<td>+48% +50</td>
<td>50</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>ip at 20 min, before marker</td>
<td>ED50=375 nmol/mouse</td>
<td>Increase 51</td>
<td></td>
</tr>
<tr>
<td>Carmine (20 min)</td>
<td>ip at 20 min, before marker</td>
<td>ED60=117 nmol/mouse</td>
<td>Increase 51</td>
<td></td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>ip at 20 min, before marker</td>
<td>ED90=418 nmol/mouse</td>
<td>Increase 51</td>
<td></td>
</tr>
</tbody>
</table>

Time after administration of the non-absorbable marker at which the mice were killed is shown in parentheses. *Compared with vehicle control.

LED, lowest effective dose investigated.

agonist is suggested by data obtained in vitro (see above) and also by the observation that the anandamide uptake inhibitor AM404 does not affect passage of a charcoal meal along mouse intestine when administered alone or potenti- ate the inhibitory effect on charcoal meal transit of exogenously administered anandamide. It should be borne in mind however that AM404 is not only an anan- damide uptake inhibitor but also a vanilloid receptor agonist and may therefore induce acetylcholine release from the small intestine (see above).

SR141716A has also been found to increase charcoal transit through the small intestine of mice exhibiting diarrhoea induced by croton oil, albeit to no greater an extent than in croton oil free mice (see also table 3). In addition, it has been shown to stimulate rat or mouse defecation in vivo (see above). There is some evidence that cannabinoid receptor agonists can suppress increases in gastrointestinal activity but not all experiments and to increase mouse faecal water content and the fluid content of rat small intestine. No effect on intestinal transit has been observed in response to SR144528.

Central sites of action

There is some evidence that cannabinoid receptor agonists and SR141716A can affect gastrointestinal motility by interact- ing with sites in the brain. More specifically, there are reports that rat and mouse gastric emptying and intestinal transit can be altered by intracerebroventricular adminis- tration of Δ2-THC, cannabidiol produced a dose related blockade of naloxone in morphine dependent animals. They observed significant dextral shifts in the log concentration-response curve of Δ2-THC and CP55940 for inhibition of electrically evoked contractions of MPLM, without inducing tolerance to the contractile effect of ace- tylcholine. It also decreased the size of the maximal responses to Δ2-THC and CP55940, a possible indicator of a reduction in cannabinoid receptor density and/or coupling efficiency. Basilio and colleagues exposed segments of guinea pig MPLM for five hours to a concentra- tion of (+)-WIN55212 (50 nM) expected to reduce the amplitude of electrically evoked contractions by 50%. At the end of this period, the amplitude of evoked contractions was no less in the (+)-WIN55212 treated tissues than in untreated tissues, indicating the development of tolerance. Guagnini and colleagues preincubated MPLM of human ileum or distal jejunum at 18°C for 48 hours with 10 µM (+) or (-)-WIN55212. Preincubation with the (+)-enantiomer but not with the (-)-WIN55212 completely abolished the inhibitory effect of (+)-WIN55212 on electrically evoked contractions of MPLM. They also found that twitch responses were markedly enhanced by 1 µM SR141716A in tissues that had been preincubated with (+)-WIN55212 but not in tissues that had been preincu- bated with (-)-WIN55212 or with the drug vehicle DMSO (SR141716A does not induce inverse cannabimimetic effects in human MPLM). Accordingly, this preparation may serve as an in vitro model for cannabinoid dependence. In line with the observation of Guagnini and colleagues is a finding by Lichtman and colleagues that one of the withdrawal signs induced by SR141716A in Δ2-THC tolerant dogs is diarrhoea. It is noteworthy however that SR141716A (1 µM) has been reported not to induce “withdrawal” contractions in resting (+)-WIN55212 tolerant guinea pig MPLM. In their experiments with guinea pig MPLM, Basilio and colleagues also obtained evidence for the development of cross tolerance between (+)-WIN55212 and morphine. They observed significant dextral shifts in the log concentration-response curve for inhibition of electrically evoked contractions of both (+)-WIN55212 and morphine in MPLM that had been preincubated for five hours with either of these agonists. In contrast, tolerance to the inhibitory effect of normorphine (or clonidine) on electrically evoked contractions was not detected by Pertwee and colleagues in guinea pig MPLM that had been rendered cannabinoid tolerant by in vivo pretreatment with Δ2-THC.

Finally, there is evidence that cannabinoid receptor ago- nists can suppress increases in gastrointestinal activity pro- cipitated by naloxone in morphine dependent animals. Hine and colleagues found that Δ2-THC but not cannabidiol produced a dose related blockade of naloxone...
induced signs of heightened gastrointestinal activity (diarrhoea and increased defecation) as well as other abstinence signs in morphine dependent rats. These findings led them to conclude that cannabinoids might have potential for the management of opioid withdrawal in the clinic. Frederickson and colleagues56 found that “withdrawal” contractions induced by naloxone in ileum taken from guinea pigs that had been treated with a slow release morphine suspension could be attenuated by (−) but not by (+)-Δ^2-THC at a concentration (95 nM) that did not affect contractions produced by acetylcholine. Morrone and colleagues57 reported that a cannabis extract (5.2 µM Δ^2-THC) reduced naloxone induced “withdrawal” contractions in segments of guinea pig ileum and rabbit jejunum that had been preincubated for five minutes with morphine or with the κ opioid receptor agonist U-50,488H. Acetylcholine induced contractions were not blocked by the cannabis. Basilio and colleagues58 found that “withdrawal” contractions induced by naloxone in strips of guinea pig MPLM that had been rendered opioid and cannabinoid tolerant by a five hour exposure to morphine could be prevented by 50 nM (+)-WIN55212. Because CB1 receptors can mediate suppression of acetylcholine release in the myenteric plexus (see above) and because naloxone precipitated “withdrawal” contractions of MPLM are thought to be triggered by the endogenous release of acetylcholine, 5-HT, and substance P into neuromuscular synapses, it is possible that (+)-WIN55212 attenuates these contractions by inhibiting the release of one or more of these contractile agents59 60 (see also above). Another possibility is that (+)-WIN55212 interacts directly with µ opioid receptors.61

Conclusions

There is little doubt from the animal data described in this review that the endocannabinoid system extends into the enteric nervous system where it exerts an inhibitory influence on the processes of gastric emptying and peristalsis. These effects on gastrointestinal motility seem to be largely mediated by peripheral CB1 receptors that inhibit ongoing contractile transmitter release when activated. Gastric acid secretion can also be inhibited in response to CB2 receptor activation although the underlying mechanisms have yet to be elucidated in detail. Cannabinoid pretreatment induces tolerance to the inhibitory effects of cannabinoid receptor agonists on gastrointestinal motility. However, the ability of naloxone to induce “withdrawal” contractions in opioid pretreated intestinal tissue seems not to be shared by the CB1 selective antagonist SR141716A when this is added to intestinal tissue that has been rendered cannabinoid tolerant by in vitro pretreatment with the cannabinoid receptor agonist (+)-WIN55212. Non-CB1 receptors for cannabinoids that are present in the gastrointestinal tract include (i) CB1, or CB2-like receptors and (ii) vanilloid VR1 receptors that can be activated by anandamide and some of its analogues but not by non-icosanoid cannabinoids. However, the part played by vanilloid VR1 receptors in the pharmacology of exogenously administered or endogenously released anandamide and the role(s) of gastrointestinal CB1 or CB2-like receptors in health or disease remain to be established.

The observation that inverse cannabimimetic effects can be produced by the CB1 receptor inverse agonist SR141716A in mouse, rat, or guinea pig intestine constitutes evidence that the endocannabinoid system is tonically active in the intestinal tract. This tonic activity seems to arise from the presence of a population of CB1 receptors that are precoupled to their effector mechanisms rather than from the endogenous release of endocannabinoids. Evidence for the presence of precoupled CB1 receptors in the human intestine has also been obtained, albeit only in tissue (ileum) that has been rendered cannabinoid tolerant by prior exposure to a cannabinoid receptor agonist. Further experiments are now required to determine whether there are any disease states in which CB1 receptor precoupling is increased and also whether endogenously released endocannabinoids ever contribute to the control of gastrointestinal function.

Cannabinoid receptor agonists delay gastric emptying in humans as well as in rodents, and they may also inhibit human gastric acid secretion. It is also worth noting that there have been a number of anecdotal accounts of the effective use of cannabis in the past against dysenteric and cholera.62 Even so, the extent to which the inhibitory effects of cannabinoid receptor agonists or antagonists/inverse agonists on gastrointestinal motility and/or on gastric acid secretion can be exploited in the present day clinic has yet to be investigated in depth. So too has the extent to which these drugs provoke unwanted effects in the gastrointestinal tract when used for other medicinal purposes.

The therapeutic implications of the existence of a group of drugs, the cannabinoids, that possesses anti-inflammatory and analgesic properties63 coupled to an inhibitory effect on gastric acid secretion also warrants investigation. Clearly there is now a need both for clinical studies and for a more detailed elucidation through non-clinical research of the role of the endocannabinoid system in the gastrointestinal tract.

R G PERTWEE

Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen

Foresterhill, Aberdeen AB25 2ZD, UK

rgp@abdn.ac.uk

www.gutjnl.com

Some of the research described in this article was supported by grants from the National Institute on Drug Abuse (DA 09158 and DA 09789) and from the Wellcome Trust.

Cannabinoids and the gastrointestinal tract

28 South AM, Pertwee RG. Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus-longitudinal muscle strip of guinea pig small intestine can be modulated by Ca2+ and cannabinoid CB2 receptors. Naunyn Schmiedebergs Arch Pharmacol 1997;356:317–18.

