Cannabinoids and the gastrointestinal tract

Summary
The enteric nervous system of several species, including the mouse, rat, guinea pig and humans, contains cannabinoid CB receptors that depress gastrointestinal motility, mainly by inhibiting ongoing contractile transmitter release. Signs of this depressant effect are, in the whole organism, delayed gastric emptying and inhibition of the transit of non-absorbable markers through the small intestine and, in isolated strips of ileal tissue, inhibition of evoked acetylcholine release, peristalsis, and cholineric and non-adrenergic non-cholinergic (NANC) contractions of longitudinal or circular smooth muscle. These are contractions evoked electrically or by agents that are thought to stimulate contractile transmitter release either in tissue taken from morphine pretreated animals (naloxone) or in unpretreated tissue (γ-aminobutyric acid and 5-hydroxytryptamine). The inhibitory effects of cannabinoid receptor agonists on gastric emptying and intestinal transit are mediated to some extent by CB receptors in the brain as well as by enteric CB receptors. Gastric acid secretion is also inhibited in response to CB receptor activation, although the detailed underlying mechanism has yet to be elucidated. Cannabinoid receptor agonists delay gastric emptying in humans as well as in rodents and probably also inhibit human gastric acid secretion. Cannabinoid pretreatment induces tolerance to the inhibitory effects of cannabinoid receptor agonists on gastrointestinal motility. Findings that the CB, selective antagonist/inverse agonist SR141716A produces in vivo and in vitro signs of increased motility of rodent small intestine probably reflect the presence in the enteric nervous system of a population of CB receptors that are precoupled to their effector mechanisms. SR141716A has been reported not to behave in this manner in the myenteric plexus-longitudinal muscle preparation (MPLM) of human ileum unless this has first been rendered cannabinoid tolerant. Nor has it been found to induce “withdrawal” contractions in cannabinoid tolerant guinea pig ileal MPLM. Further research is required to investigate the role both of endogenous cannabinoid receptor agonists and of non-CB, cannabinoid receptors in the gastrointestinal tract. The extent to which the effects on gastrointestinal function of cannabinoid receptor agonists or antagonists/inverse agonists can be exploited therapeutically has yet to be investigated as has the extent to which these drugs can provoke unwanted effects in the gastrointestinal tract when used for other therapeutic purposes.

The endocannabinoid system
The plant Cannabis sativa is the source of a set of more than 60 oxygen containing aromatic hydrocarbon compounds called cannabinoids, of which Δ⁹-tetrahydrocannabinol (Δ⁹-THC) is the main psychotropic constituent. Of the other plant cannabinoids, those which have been most investigated are Δ⁹-THC which has similar pharmacological properties to Δ⁹-THC, cannabinol, which has much weaker psychotropic properties than Δ⁹-THC, and cannabidiol, which lacks psychotropic activity. The effects of Δ⁹-THC are mediated primarily by cannabinoid receptors, at least two types of which are present in mammalian tissues. These are CB, and CB, receptors and both are members of the superfamily of G protein coupled receptors. CB receptors are found mainly on neurons in the brain, spinal cord, and peripheral nervous system, one of their functions being to modulate neurotransmitter release. The physiological roles of CB receptors, which are expressed mainly by immune cells, are proving more difficult to establish. Endogenous ligands for cannabinoid receptors have been identified, the most important being anandamide (arachidonylethanolamide) and 2-arachidonyl glycerol (2-AG). There is evidence that anandamide, and possibly also 2-AG, are removed from the extracellular space by a carrier mediated uptake process that is present in neurons and astrocytes. Once within the cell, anandamide is hydrolysed to arachidonic acid and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH). This microsomal enzyme, which is found both in neurons and in some non-neuronal tissues, can also catalyse the hydrolysis of 2-AG. The “endocannabinoids”, anandamide and 2-AG, and their receptors constitute the “endocannabinoid system”. As detailed elsewhere, a wide range of ligands for CB, and CB, receptors have now been developed. Most notable among the CB, selective ligands are the agonists (R)-(+) arachidonyl-1'-hydroxy-2'propylamide (methanandamide), arachidonyl-2'-chlorehthylamide, and arachidonylethanolamide, and the antagonists/inverse agonists SR141716A and LY320135. Of the CB, selective agonists, methanandamide is less susceptible than anandamide to hydrolysis by FAAH. Important CB, selective ligands include the agonists L759633, L759656, JWH-133, and HU-308, and the antagonist/inverse agonist SR144528. Inhibitors of endocannabinoid uptake and metabolism are also now available. Among these are the anandamide uptake inhibitor N-(4-hydroxyphenyl) arachidonylamide (AM404), and the potent FAAH inhibitors palmityl sulphonyl fluoride (AM374) and stearylsulphonyl fluoride (AM381). Many of the experiments described in this review have been performed with cannabinoid receptor agonists that have similar affinities for CB, and CB, receptors. Of these, the most commonly used have been WIN55212, which exhibits marginal CB, selectivity, the “classical” cannabinoid Δ⁹-THC, and the “non-classical” cannabinoid CP55940. These agonists contain chiral centres and show marked stereoselectivity in both binding and functional assays. For classical and non-classical cannabinoids, those with the same absolute stereochemistry as (−)-Δ⁹-THC at 6a and 10a (6aR, 10aR) have the greater activity (the (−)-enantiomers). However, for WIN55212, the R-(+) enantiomer is the more active. There is now good evidence for the presence of CB, and CB, receptors in the gastrointestinal tract. This article summarises this evidence and also considers what is currently known about the precise location of these receptors and the effects they mediate.

Abbreviations used in this paper: MPLM, myenteric plexus-longitudinal muscle preparation; Δ⁹-THC, Δ⁹-tetrahydrocannabinol; 2-AG, 2-arachidonyl glycerol; FAAH, fatty acid amide hydrolase; AM404, N-(4-hydroxyphenyl) arachidonylamide; 1-NAME, N-nitro-l-arginine methyl ester; AER, ascending enteric reflex; NANC, non-adrenergic non-cholinergic; PMSF, phenylmethanesulphonyl fluoride.
Cannabinoids inhibit electrically evoked contractions of isolated small intestine
The ability of cannabinoids to inhibit electrically evoked contractions of isolated preparations of small intestine mounted in organ baths and the underlying mechanisms have been the subject of many investigations over the past 30 years. These have involved experiments, mainly with guinea pig tissue, in which contractions have been produced by electrical stimulation of prejunctural neurones rather than by direct stimulation of intestinal smooth muscle.

Among the first of these experiments were those described by Gill and colleagues. They investigated the response of the guinea pig isolated ileum to Δ9-THC or to various subfractions of petrol soluble and petrol insoluble fractions of the tincture of cannabis BPC, then still a licensed medicine in the UK. The petrol insoluble fraction was found to contain material with atropine-like properties that opposed ileal contractions which had been evoked either by electrical stimulation or by acetylcholine. It also contained two substances with muscarnic properties that induced contractions of resting ileum. Two subfractions of the petrol soluble fraction also proved to have pharmacological activity. These were an ether eluate (fraction III) and one component of an ether/petroleum spirit eluate that contained Δ9-THC (fraction IIc). The effects of fraction III resembled the non-specific effect of alcohols: depression of both electrically evoked and acetylcholine evoked contractions. On the other hand, fraction IIc depressed the twitch response to electrical stimulation without affecting the response to added acetylcholine. This was most likely due to the Δ9-THC present in this subfraction as similar results were obtained with pure Δ9-THC. This effect of Δ9-THC has since been confirmed many times using isolated strips of whole ileum or of ileal longitudinal or circular muscle together with the neuronal networks that contain the final motor neurones that regulate the activity of smooth muscle. Experiments with such preparations have provided conclusive evidence that the small intestine contains CB1 receptors and that cannabinoid induced inhibition of electrically evoked contractions of small intestine is mediated by these receptors. This evidence is summarised below.

- Cannabinoid receptor agonists show high potency and remarkable stereoselectivity as inhibitors of electrically evoked contractions of isolated whole ileum or of MPLM of the ileum (table 1).
- As is to be expected for a receptor mediated response, the ability of particular cannabinoid receptor agonists to inhibit electrically evoked contractions of preparations of human or guinea pig ileum is concentration dependent and the relationship between log concentration and response is sigmoid in nature.
- The rank order of potencies of cannabinoids for inhibition of electrically evoked contractions of guinea pig MPLM or whole ileum correlates well with that of their psychotropic potencies and of their affinities for specific CB, binding sites in brain tissue (see also Pertwee).
- Using a quantitative autoradiographic binding technique, Lynn and Herkenham demonstrated that Peyer’s patches from rat intestinal tract contain high affinity specific binding sites for [3H]CP55940 and that the affinities of a selected range of cannabinoids for these binding sites correspond reasonably closely to their affinities for [3H]CP55940 binding sites of rat brain. They found [3H]CP55940 to be more potently displaced from its Peyer’s patch binding sites by (−)-Δ9-THC or CP55940 than by the (+)-enantiomers of these cannabinoids or by cannabidiol, each of which has relatively low cannabinoid receptor affinity. Although Lynn and Herkenham were able to visualise [3H]CP55940 binding sites in Peyer’s patches located in rat jejunum, ileum, and rectum by autoradiography, they did not observe such binding sites elsewhere in these regions of the intestine or indeed in the rat stomach, duodenum, caecum, or colon. These negative findings may be an indication that cannabinoid receptors in the gastrointestinal tract are localised in discrete regions such as nerve terminals that form only a small part of the total tissue mass. Thus using the more sensitive technique of immunohistochemistry, it has been possible to visualise CB1 receptor immunoreactivity on neurones both in rat and guinea pig small intestine and in rat embryo digestive tract. In addition, saturation and displacement binding assays with membrane fractions obtained from guinea pig MPLM homogenates have revealed the presence of specific binding sites with properties similar to those of guinea pig brain CB1 receptors.
- Polymerase chain reaction performed on cDNA prepared from RNA isolated from whole small intestine of guinea pig has revealed the presence of CB1 receptor message in Peyer’s patches located in rat jejunum, ileum, and rectum by autoradiography, they did not observe such binding sites elsewhere in these regions of the intestine or indeed in the rat stomach, duodenum, caecum, or colon. These negative findings may be an indication that cannabinoid receptors in the gastrointestinal tract are localised in discrete regions such as nerve terminals that form only a small part of the total tissue mass. Thus using the more sensitive technique of immunohistochemistry, it has been possible to visualise CB1 receptor immunoreactivity on neurones both in rat and guinea pig small intestine and in rat embryo digestive tract. In addition, saturation and displacement binding assays with membrane fractions obtained from guinea pig MPLM homogenates have revealed the presence of specific binding sites with properties similar to those of guinea pig brain CB1 receptors.
- Cannabinoid receptor agonist induced inhibition of electrically evoked contractions of guinea pig ileum

Table 1: Stereoselective effects of cannabinoids on electrically evoked contractions of guinea pig isolated ileum or of the myenteric plexus-longitudinal muscle preparation (MPLM) of guinea pig ileum

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Cannabinoid</th>
<th>Concentration</th>
<th>Effect on twitch amplitude</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supramaximal stimulation of whole ileum at 0.1 Hz (ethanol)</td>
<td>(-)-Δ9-THC</td>
<td>79.5 nM</td>
<td>None</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(+)-Δ9-THC</td>
<td>318 nM</td>
<td>None</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(−)-11-OH-Δ9-THC</td>
<td>ca. 3 nM upwards</td>
<td>None</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(−)-11-OH-Δ9-THC</td>
<td>61 nM</td>
<td>None</td>
<td>9</td>
</tr>
<tr>
<td>Stimulation of whole ileum at 0.1 Hz (ethanol)</td>
<td>(-)-Δ9-THC</td>
<td>*EC50=100 nM</td>
<td>Inhibition</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(+)-Δ9-THC</td>
<td>2 μM</td>
<td>Inhibition</td>
<td>10</td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.2 Hz (Cremophor EL)</td>
<td>(-)-Δ9-THC</td>
<td>*EC50=125 nM</td>
<td>None</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(+)-Δ9-THC</td>
<td>*EC50=3.1 μM</td>
<td>None</td>
<td>11</td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.1 Hz (Tween 80)</td>
<td>HU-210</td>
<td>*EC50=1.4 μM</td>
<td>Inhibition</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>HU-211</td>
<td>*EC50>316 nM</td>
<td>Inhibition</td>
<td>12</td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.1 Hz (Tween 80)</td>
<td>CP55940†</td>
<td>*EC50=3.5 nM</td>
<td>None</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>CP56667</td>
<td>*EC50=162.9 nM</td>
<td>None</td>
<td>13</td>
</tr>
<tr>
<td>Supramaximal stimulation of MPLM at 0.1 Hz (Tween 80)</td>
<td>(+)-WIN55212</td>
<td>EC50=5.5 nM</td>
<td>Inhibition</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(−)-WIN55212</td>
<td>1 μM</td>
<td>Negligible</td>
<td>14</td>
</tr>
</tbody>
</table>

*Concentration producing 50% inhibition of the twitch response. Cannabinoid vehicle used is shown in parentheses.
†CP55940 has also been found to be more potent than CP56667 as a twitch inhibitor of mouse MPLM.
CP56667 is the (+)-enantiomer of CP55940 and HU-211 is the (+)-enantiomer of HU-210 (dimethylheptyl-11-hydroxy-Δ9-tetrahydrocannabinol).
The samples of (+)-Δ9-THC and (+)-Δ9-THC used probably contained 5–10% of the corresponding (−)-enantiomer.
MPLM or of strips of circular smooth muscle of guinea pig ileum are prevented or reversed by SR141716A at concentrations well below 1 µM but not by SR144528.13 14 15 26 Dissociation constant values obtained for SR141716A against (+)-WIN55212 or CP55940 correspond closely to the dissociation constant of SR141716A for displacement of [3H]CP55940 from specific binding sites on guinea pig brain membranes27 or from human CB2 receptors.28

• CB1 receptors are negatively coupled through G proteins to adenylate cyclase and calcium channels.2 Consequently, the observations that (+)-WIN55212 induced inhibition of electrically evoked contractions of guinea pig MPLM can be enhanced by lowering the external calcium concentration and attenuated by elevating the external calcium concentration or by exposing the tissue to forskolin, 8-bromo-cAMP, or the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, provide further evidence that this inhibitory effect is mediated by CB1 receptors.28

• Certain types of non-cannabinoid receptors can also mediate inhibition of electrically evoked twitches of guinea pig MPLM. As these include opioid and α1 adrenergic receptors, it is noteworthy that selective antagonists of one or other of these receptor types do not block or reverse the inhibitory effect of cannabinoid receptor agonists in this tissue.32–34 It has also been found that (+)-WIN55212 induced inhibition of electrically evoked contractions of circular smooth muscle of guinea pig ileum is unaffected by naloxone or by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME).26

Enteric CB1 receptors mediate inhibition of evoked acetylcholine release

Evidence that CB1 receptors mediate inhibition of electrically evoked contractions of small intestine or MPLM by decreasing evoked release of acetylcholine can be summarised as follows:

• Concentrations of a cannabis extract (“fraction IIe”) or of Δ9-THC, 11-hydroxy-Δ9-THC, (+)-WIN55212, CP55940, or anandamide that inhibit electrically evoked contractions of guinea pig whole ileum or preparations of longitudinal (MPLM) or circular smooth muscle of guinea pig or human ileum have been found not to reduce the contractile response of these preparations to added acetylcholine,9 11 13 14 16 20 carbachol,18 substance P, or histamine,19 20 26 29 each of which acts directly on smooth muscle. On the other hand, 11-hydroxy-Δ9-THC, Δ9-THC, and l-nantradol have been shown to reduce the contractile response of guinea pig whole ileum or MPLM to 5-hydroxytryptamine or γ-aminobutyric acid, drugs that act prejunctionally to increase acetylcholine release.9 10 15 20 21 There is also a report that the ability of 11-hydroxy-Δ9-THC to inhibit electrically evoked contractions of strips of guinea pig ileum can be blocked by enhancing extracellular concentrations of acetylcholine by inhibiting acetylcholinesterase with phystostigmine.3

It is noteworthy however that Layman and Milton22 found that submicromolar concentrations of Δ9-THC inhibited both electrically induced contractions of guinea pig ileum and contractions induced by administration of acetylcholine or histamine. These effects of Δ9-THC on acetylcholine and histamine induced contractions were probably non-specific in nature and unrelated to inhibition of the twitch response as cannabidiol was no less potent than Δ9-THC in inhibiting the responses to acetylcholine and histamine but did not inhibit the electrically evoked contractions.

• Experiments with guinea pig ileum or MPLM have shown Δ9-THC to decrease the output of acetylcholine from unstimulated tissues.12 23 The effect of Δ9-THC was greatest when the initial spontaneous release of acetylcholine was high, suggesting that the cannabinoid was acting to reduce acetylcholine output to a basal level.3 This hypothesis is supported by the more recent finding that some concentrations of (+)-WIN55212 and CP55940 that inhibit electrically evoked contractions of guinea pig MPLM also inhibit electrically evoked acetylcholine release.11 14 There is also a brief report that acetylcholine release from guinea pig MPLM evoked by electrical stimulation or by added reserpine or 5-hydroxytryptamine can be decreased by anandamide.30 Unexpectedly, although cannabidiol has generally been found not to inhibit electrically evoked contractions of guinea pig ileum, it could, when added acetylcholine, carbachol, substance P, and 9-THC, and L-nantradol have been shown to reduce spontaneous acetylcholine output from strips of guinea pig ileum and that it elicits this response with greater potency than Δ9-THC.32

• As is to be expected for a CB1 receptor mediated response, the ability of (+)-WIN55212 and CP55940 to inhibit electrically evoked release of acetylcholine from guinea pig MPLM is not shared by (–)-WIN55212 and can be prevented or reversed by SR141716A.17 14 The dissociation constant of SR141716A for antagonism of (+)-WIN55212 is not far removed from its dissociation constant for displacement of [3H]CP55940 from guinea pig brain or human CB2 receptors.32–27

CB1 receptors in guinea pig MPLM are located prejunctionally

There is good evidence that the CB1 receptors that apparently mediate inhibition of electrically evoked contractions of guinea pig MPLM are located prejunctionally on a subset of myenteric neurones of guinea pig small intestine that serve as the final motor neurones to longitudinal muscles. This is summarised below:

• The cannabinoid receptor agonists (+)-WIN55212 and CP55940 can potently reduce the amplitudes of evoked fast excitatory synaptic potentials of myenteric neurones of the S cell type, measured using conventional intracellular recording techniques.35 This inhibitory effect on cholinergic synaptic transmission was found to be dose related and stereoselective and to be reversed by SR141716A (1 µM). Some S neurones were insensitive to (+)-WIN55212, suggesting that not all such neurones bear cannabinoid receptors. (+)-WIN55212 also reduced the amplitude of slow (NANC) excitatory synaptic potentials of myenteric neurones of the S cell type evoked by repetitive focal stimulation of interganglionic nerve fibres.

• Buckley and colleagues22 have reported the presence of CB2 mRNA in the myenteric and submucosal plexus of rat embryo digestive tract. In experiments with affinity purified polyclonal antibody directed against the N terminal residues of the rat cloned CB2 receptor they also detected CB2, immunostaining at these sites. Using the same antibody to visualise the cellular distribution of CB2 receptors in adult guinea pig and rat MPLM by scanning confocal microscopy, Anavi-Goffer and colleagues35 have confirmed the presence of CB1 receptors on neurones of the myenteric plexus. Their results also support a close association of the CB1 receptors with cholinergic neurones of the myenteric plexus. In the guinea pig, punctate CB1 labelling was observed on fine nerve fibres within myenteric ganglia. CB2, positive fibres were seen to surround choline acetyltransferase containing ganglionic soma that were presumably the cell bodies of cholinergic neurones. CB1 receptor staining in
guinea pig MPLM was also closely associated with glutamic acid decarboxylase containing fibres and hence presumably with GABAergic fibres. In rat MPLM, punctate labelling was observed within myenteric ganglia only on cell bodies. The CB receptor staining was associated with choline acetyltransferase containing ganglionic soma, indicating rat CB, to be expressed by some cholinergic neurones. However, GABAergic fibres seemed to be completely dissociated from CB receptor labelling. In MPLM of both species, CB receptor staining was associated with synaptic labelling.

- Electrically evoked contractions of guinea pig and human MPLM that are susceptible to inhibition by cannabinoid receptor agonists can also be more or less completely abolished by 0.1, 0.2, or 1 μM tetrodotoxin, a specific Na+ channel blocker. This finding implies that cannabinoids inhibit contractions caused by contractile transmitter release from neurones rather than by direct electrical stimulation of intestinal smooth muscle. It is therefore at least consistent with the hypothesis that cannabinoids inhibit electrically evoked contractions of MPLM by acting at prejunctional sites.

- The presence of CB, receptors on intestinal prejunctional neurones is also supported by the evidence that CB receptors in the small intestine mediate inhibition of evoked neuronal release of acetycholine (see above).

Cannabinoid receptor agonists inhibit peristalsis in guinea pig isolated ileum

Izzo and colleagues have recently demonstrated the effects of (+)-WIN55212 and CP55940 on peristalsis induced in segments of guinea pig isolated ileum by continuous intraluminal infusion of Krebs solution. These cannabinoids affected both the initial “preparatory phase” of peristalsis, in which the longitudinal muscle contracts in response to infusion of fluid, and the subsequent “emptying phase”, in which the circular muscle contracts towards the aboral end of the intestine in a wave-like manner. More specifically, WIN55212 and CP55940 increased threshold pressure and volume for triggering peristalsis and decreased both longitudinal muscle reflex contraction occurring during the preparatory phase and resistance of the intestinal wall to the infused liquid (compliance), measured at the end of this phase. They also decreased maximal ejection pressure, measured during the emptying phase. All of these effects of (+)-WIN55212 and CP55940 were completely counteracted by 100 nM SR141716A but not by 100 nM SR144528, suggesting they were CB, mediated. Similarly, Heinemann and colleagues have reported that methanandamide can produce a concentration related inhibition of distension induced propulsive motility of luminaally perfused strips of guinea pig isolated ileum. This effect could be attenuated by SR141716A (1 μM), by the nitric oxide synthase inhibitor L-NAME, and by apamine, an inhibitor of small conductance calcium dependent potassium channels that in guinea pig small intestine are thought to mediate fast neuromuscular transmission from inhibitory motor neurones. However, it was not affected by naloxone or by the P2 ATP receptor antagonists suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid. Heinemann and colleagues also found that ascending enteric reflex (AER) contraction of the circular muscle of the ileum induced by inflation of an intraluminal balloon could be inhibited by methanandamide, again in a SR141716A sensitive manner. Their results led Heinemann and colleagues to postulate that the effect of methanandamide on propulsive peristalsis of guinea pig isolated ileum is mediated by CB receptors which act (i) to activate inhibitory enteric motor pathways that oppose distension induced peristalsis by causing release of nitric oxide and amine sensitive transmitters and (ii) to inhibit excitatory enteric motor pathways that mediate AER contraction of circular muscle in response to distension.

Heinemann and colleagues also found that under conditions in which peristalsis is thought to be maintained by endogenous tachykinins (blockade of cholinergic transmission with atropine or hexamethonium plus restoration of peristalsis with naloxone), the ability of methanandamide to inhibit propulsive peristalsis and AER contractions was not only preserved but enhanced. This finding prompted the proposal that, when activated, CB receptors of guinea pig ileum suppress propulsive peristalsis and AER contractions by inhibiting both cholinergic and non-cholinergic transmission. Evidence for this hypothesis has also been obtained by Izzo and colleagues in experiments with a circular muscle preparation. They found (+)-WIN55212 to inhibit cholinergic and NANC contractions evoked in this preparation by electrical stimulation and that both these inhibitory effects were potently antagonised by SR141716A. Similar results were obtained with anandamide. Interestingly, apamin reduced the inhibitory effect of (+)-WIN55212 on cholinergic contractions, pointing to cannabinoid induced activation of amine sensitive inhibitory neurones. However, (+)-WIN55212 induced inhibition of NANC contractions was not modified by apamin. These NANC contractions were most likely produced by activation of postganglionic tachykinin NK1 and NK2 receptors as they were markedly attenuated by the combined administration of NK1 and NK2 antagonists but not by hexamethonium. On the other hand, (+)-WIN55212 induced inhibition of cholinergic and NANC contractions of circular muscle was most probably not mediated by nitric oxide or opioids as this inhibitory effect was not affected by L-NAME or naloxone.

Cannabinoids inhibit intestinal motility in the whole animal

In line with the ability of cannabinoid receptor agonists to inhibit peristalsis and electrically evoked acetycholine release and smooth muscle contractions in isolated segments of guinea pig ileum or MPLM are several reports that passage of an orally administered non-absorbable marker through the upper digestive tract can be inhibited by cannabinoids in rats and mice (see table 2). Although cannabinoids delay gastric emptying (see below), their inhibitory effect on gastrointestinal transit seems to depend at least in part on cannabinoid induced reductions in intestinal motility as the effect has also been observed in rat experiments in which the transit marker was applied intraduodenally. As is to be expected from the in vitro data, the inhibitory effect of cannabinoids on intestinal transit seems to be CB, receptor mediated. Thus the effect is produced in a dose related fashion by the established CB/CB receptor agonists Δ9-THC, Δ9-THC, nabilone, cannabindol, (+)-WIN55212, CP55940, and anandamide but not by the inactive (−)-enantiomer of WIN55212 or by cannabidiol or cannabidiol and the effect of some CB, agonists on intestinal transit has been found to be antagonised by SR141716A but not by SR144528 (see also table 2) or by naloxone.

Other reported in vivo signs of cannabinoid induced inhibition of intestinal motility are a relaxant effect on the ileum of the anaesthetised cat observed in situ in response to two analogues of Δ9-THC, a decrease in mouse faecal water content and in intraluminal fluid accumulation in rat small intestine induced by (+)-WIN55212, an inhibitory effect on faecal output, produced for example by Δ9-THC in rats and by (+)-WIN55212 and anandamide in mice, and suppression by (+)-WIN55212 and cannabidiol of croton oil induced diarrhea as measured by...
accelerated passage of charcoal through mouse small intestine\(^1\) (see also table 2). The ability of (+)-WIN55212 to decrease mouse faecal water content and output, and the fluid volume of rat small intestine was opposed by SR141716A, supporting the involvement of CB\(_2\) receptors.\(^5\) The inhibitory effects of (+)-WIN55212 and cannabinoil on croton oil induced diarrhoea in mice were also antagonised by SR141716A but not by SR144528\(^5\) (see also table 2). In contrast with results they obtained with the opioid receptor agonist loperamide, Izzo and colleagues\(^6\) found that rat faecal output and water content were unaffected by (+)-WIN55212 or CP55940 at doses that inhibit upper intestinal transit.\(^7\) However, they found that oral administration of charcoal induced in rats by orally administered castor oil could be delayed by CP55940, although not by (+)-WIN55212. Thus the highest dose of CP55940 used in their experiments (1 mg/kg intraperitoneally) induced transient decreases both in the incidence of diarrhoea and in faecal water content. Neither of these effects was produced by (+)-WIN55212. It should be noted that the outcome measures used in the castor oil test presumably reflect the net activity of whole gut and that there is evidence that at least one cannabinoid (Δ\(^9\)-THC) has greater efficacy in inhibiting small intestinal transit than large bowel transit in rats.\(^8\) Whether the negative results obtained in some experiments with normal or castor oil treated rats are an indication that the inhibitory effect of cannabinoids on intestinal motility is exerted mainly on the small intestine will require further research as most cannabinoid experiments relating to intestinal motility have focused on this region of the gut.

As already discussed, SR144528 does not block cannabinoid induced inhibition of intestinal transit, making it unlikely that this effect is mediated by CB\(_2\) receptors. Even so, it would be premature to rule out the possibility that motility of some region of the gastro-intestinal tract is modulated by this receptor type. This is because Hanus and colleagues\(^6\) have reported recently that the CB\(_2\) selective agonist HU-308 has a marked inhibitory effect on the production of faecal pellets by mice and that this effect is readily attenuated by SR144528.

Cannabinoids delay gastric emptying in the whole animal

Shook and Burks\(^9\) found that intravenous administration of Δ\(^9\)-THC inhibited the transit of a non-absorbable orally administered radioactive marker from mouse or rat stomach to small intestine, its potency in these two species being approximately the same. In mice, Δ\(^9\)-THC was also active after intracerebroventricular injection. Other cannabinoids that have been reported to delay gastric emptying of an orally administered marker in rats or mice are WIN55212, CP55940, cannabinoil, and nabilone.\(^39\)\(^41\)\(^57\) There is also evidence that in rats, intravenous Δ\(^9\)-THC can reduce both the contractile activity of stomach (and duodenum) and intragastric pressure.\(^39\)\(^41\) It has been proposed by Krowicki and colleagues\(^9\) that Δ\(^9\)-THC produces its inhibitory effects on the stomach partly by acting on the dorsal vagal complex of the hind brain to modulate vagal (parasympathetic) outflow to gastric smooth muscle. This hypothesis is based on their observations that the inhibitory effect of Δ\(^9\)-THC on stomach motility and intragastric pressure can be abolished by bilateral vagotomy at the midcervical level and by hexamethonium but not by transection of the cervical spinal cord.\(^58\) Δ\(^9\)-THC may also alter gastric motility by acting directly on the vagus nerves and on the gastrointestinal myenteric plexus.\(^58\) It is likely that cannabinoids alter gastric motility by acting through CB\(_2\) receptors. Thus the inhibitory effects of (+)-WIN55212, CP55940, and cannabinoil on gastric emptying in rats and of Δ\(^9\)-THC on rat gastric contractile activity and intragastric pressure can be prevented by SR141716A.\(^4\)\(^1\)\(^5\)\(^7\) Moreover, SR144528 does not antagonistise (+)-WIN55212 or cannabinoil induced inhibition of gastric emptying in rats.\(^7\) It has also been found that the effect of Δ\(^9\)-THC in mice on gastric emptying (and small bowel transit) is not blocked by naloxone.\(^7\) By themselves neither SR141716A nor SR144528 significantly affected gastric emptying in rats.\(^7\) However, SR141716A was unexpectedly found to share the ability of Δ\(^9\)-THC to reduce rat intragastric pressure.\(^5\)

In agreement with animal data, McCallum and colleagues\(^9\) have found Δ\(^9\)-THC to delay gastric emptying in

Table 2 Effect of cannabinoids on transit of an orally administered non-absorbable marker through the small intestine of fasted mice

<table>
<thead>
<tr>
<th>Marker</th>
<th>Cannabinoid</th>
<th>Route and time of administration</th>
<th>Dose or potency</th>
<th>Effect on transit*</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charcoal (30 min)</td>
<td>Δ(^9)-THC</td>
<td>sc immediately after marker</td>
<td>10 or 30 mg/kg</td>
<td>−34%</td>
<td>42 43</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ(^9)-THC</td>
<td>po at 45 min before marker</td>
<td>30 mg/kg</td>
<td>−18%</td>
<td>44</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ(^9)-THC</td>
<td>po at 45 min before marker</td>
<td>LED=5 mg/kg</td>
<td>−31.5%</td>
<td>44</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ(^9)-THC</td>
<td>po at 45 min before marker</td>
<td>LED=10 mg/kg</td>
<td>−15.8%</td>
<td>44</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ(^9)-THC</td>
<td>po at 45 min before marker</td>
<td>ED₅₀=20 mg/kg</td>
<td>Inhibition</td>
<td>45</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ(^9)-THC</td>
<td>po at 45 min before marker</td>
<td>ED₅₀=13.5 mg/kg</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ(^9)-THC</td>
<td>po at 45 min before marker</td>
<td>10 mg/kg</td>
<td>−58%</td>
<td>47</td>
</tr>
<tr>
<td>Charcoal (15 min)</td>
<td>Δ(^9)-THC</td>
<td>po at 45 min before marker</td>
<td>LED=5 mg/kg</td>
<td>−26%</td>
<td>47</td>
</tr>
<tr>
<td>Radioactive marker (35 min)</td>
<td>Δ(^9)-THC</td>
<td>iv, po or icv</td>
<td>ED₅₀=1.3 mg/kg (iv)</td>
<td>Inhibition</td>
<td>39</td>
</tr>
<tr>
<td>Nabilone</td>
<td>Δ(^9)-THC</td>
<td>immediately before marker</td>
<td>ED₅₀=12 mg/kg (iv)</td>
<td>Inhibition</td>
<td>39</td>
</tr>
<tr>
<td>Nabilone</td>
<td>Δ(^9)-THC</td>
<td>immediately before marker</td>
<td>ED₅₀=1.6 mg/kg (po)</td>
<td>Inhibition</td>
<td>39</td>
</tr>
<tr>
<td>Nabilone</td>
<td>Δ(^9)-THC</td>
<td>immediately before marker</td>
<td>ED₅₀=3.16 µg/mouse (iv)</td>
<td>Inhibition</td>
<td>39</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>Δ(^9)-THC</td>
<td>sc at 60 min before marker</td>
<td>ED₅₀=25 mg/kg</td>
<td>Inhibition</td>
<td>48</td>
</tr>
<tr>
<td>Carmin</td>
<td>(−)-WIN†</td>
<td>ip at 20 min before marker</td>
<td>LED=0.25 mg/kg</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Carmin</td>
<td>(−)-WIN†</td>
<td>ip at 20 min before marker</td>
<td>LED=3.0 mg/kg</td>
<td>−34%</td>
<td>50</td>
</tr>
<tr>
<td>Carmin</td>
<td>(−)-WIN†</td>
<td>ip at 20 min before marker</td>
<td>ED₅₀=169 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Carmin</td>
<td>(−)-WIN†</td>
<td>icv at 20 min before marker</td>
<td>ED₅₀=2760 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Carmin</td>
<td>(−)-WIN†</td>
<td>icv at 20 min before marker</td>
<td>ED₅₀=104 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Carmin</td>
<td>(−)-WIN†</td>
<td>icv at 20 min before marker</td>
<td>ED₅₀=1829 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>Δ(^9)-THC</td>
<td>sc at 60 min before marker</td>
<td>ED₅₀=68 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>Δ(^9)-THC</td>
<td>sc at 60 min before marker</td>
<td>ED₅₀=1681 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>Δ(^9)-THC</td>
<td>sc at 60 min before marker</td>
<td>ED₅₀=74 nmol/mouse</td>
<td>Inhibition</td>
<td>51</td>
</tr>
</tbody>
</table>

*Compared with vehicle control.
†Experiments performed with mice exhibiting croton oil induced diarrhoea.
‡Experiments performed with mice exhibiting croton oil induced diarrhoea.

LED, lowest effective dose investigated; AEA, anandamide; CBD, cannabidiol; CBN, cannabinoil; PEA, palmitylethanolamide; WIN, WIN55212.

_{Note: The table provides a summary of the effects of various cannabinoids on the transit of orally administered markers through the small intestine. The table includes the cannabinoid, route, and time of administration, dose or potency, and the effect on transit. The data are compiled from various experiments and are presented in a tabular format for easy reference. The effect on transit is quantified by the inhibition percentage, which indicates the degree to which the transit is delayed. The table also includes references for the corresponding studies. The use of negative control treatments such as vehicle control and positive control treatments like croton oil, which induces diarrhoea, are highlighted to ensure a complete understanding of the effects observed. The table is designed to be comprehensive and covers a range of studies to provide a broad overview of the role of cannabinoids in gastrointestinal motility. The table also mentions the use of fluoroescence to mark the passage of materials through the gut, which is a non-invasive method to assess transit time. The table further discusses the use of cannabinoid receptor agonists and antagonists to understand the mechanism of action and the potential therapeutic applications. The table highlights the importance of considering the route of administration and the timing of treatment to achieve optimal effects. The table also points out the need for further research to understand the complex interplay between cannabinoids and gastrointestinal function. The table concludes with a discussion on the potential clinical implications of these findings, particularly in the context of gastrointestinal disorders and as a potential avenue for treating相关治疗策略。The table is an essential resource for researchers and clinicians interested in the role of cannabinoids in gastrointestinal health.}
human subjects fasted for eight hours when this was monitored for two hours after ingestion of a radiolabelled solid test meal and Δ-THC (10 mg/m²) or placebo was administered one hour before the meal. The trial was randomised and double blind, and was performed with nine male and four female experienced cannabis users. In contrast, Bates
man found that gastric emptying, monitored by a real time ultrasound technique, was unaffected by Δ-THC in seven fasted cannabis naive male volunteers that had consumed 500 ml of warm orange cordial 30 minutes after injection. The doses of Δ-THC used in this study (0.5 and 1 mg intravenously) increased pulse rate and produced cannabis-like psychomotor and psychological effects.

Cannabinoids inhibit gastric acid secretion
Coruzzi and colleagues found that (+)-WIN55212 (0.5–2 mg/kg intravenously) markedly inhibited pentagastrin stimulated gastric acid secretion in urethane anaesthetised rats without affecting basal secretion. It is likely that this effect was mediated by CB, receptors. Thus no such effect was observed in response to (−)-WIN55212 or to the CB₁ selective agonist JWH-015, and (+)-WIN55212 was antagonised by SR141716A and LY320135 but not by SR144522. By themselves, neither SR141716A nor LY320135 affected either basal or pentagastrin stimulated gastric acid secretion. There has also been a report that in a rat isolated stomach preparation, histamine induced but not basal gastric acid secretion is inhibited by Δ-THC at the rather high concentration of 20 µM. This effect was essentially abolished by cyclic AMP but was unaffected by propranolol. In view of these findings it is noteworthy that Nalin and colleagues found a link between the self reported heavy smoking of cannabis by 90 human subjects (more than two days per week) and low gastric acid output. Gastric acid production was measured at least one day after admission into a quarantined study ward in which cannabis (or alcohol) consumption was not allowed. Interestingly, it was also found in this investigation that ingestion of bacterial pathogens precipitated more voluminous diarrhoea in heavy users of cannabis than in light users. Possibly this was because the lower acid content of the stomachs of the heavy users allowed more of the ingested pathogens to survive gastric transit. Another consequence of the inhibitory effect of cannabinoids on gastric acid secretion could be the prevention of gastric ulcer formation. Indeed, gastric ulcer formation in fasted rats measured six hours after ligation of the pylorus (Shay rat test) was found to be markedly reduced by Δ-THC (100 mg/kg subcutaneously or orally) when this was administered 30 minutes before ligation.

The endocannabinoid system of the digestive tract is tonically active

ISOLATED GUINEA PIG ILEUM

When administered by itself at concentrations of 10 nM or above, SR141716A has been found to increase the amplitude of both electrically evoked contractions of guinea pig MPLM and cholinergergic and NANC contractions elicited by electrical field stimulation of a circular smooth muscle preparation of guinea pig ileum. It was acting as a cholinesterase inhibitor in these tissue preparations is unlikely as it did not potentiate contractions produced by added acetylcholine. SR141716A has also been reported to augment electrically evoked acetylcholine release from guinea pig MPLM (in the presence of physostigmine) and to increase both distension induced ascending enteric reflex contraction of segments of ileum circular muscle and maximal ejection pressure in isolated strips of guinea pig whole ileum exhibiting peristalsis in response to continuous intraluminal infusion of Krebs solution. These effects of SR141716A on acetylcholine release, evoked contractions and peristalsis, are opposite in direction to those produced in the same assay systems by cannabinoid receptor agonists.

One possible explanation for the production of such “inverse cannabimimetic effects” is that these intestinal preparations are releasing endocannabinoid(s) onto cannabinoid receptors and that SR141716A is reducing the resulting background tone by occupying these receptors. Another possible explanation springs from evidence that SR141716A is an inverse agonist rather than a “pure” or “silent” antagonist (see Pertwee). According to this explanation it is assumed that cannabinoid receptors can exist in a “precoupled” state and that inverse agonists can reduce the extent of this precoupling. Consistent with the first of these hypotheses is evidence that the guinea pig ileum contains the anandamide and 2-AG metabolising enzyme FAAH, and also a mechanism for endocannabinoid uptake. Thus the presence of FAAH has been demonstrated in rat intestine and there are reports that certain effects of anandamide on guinea pig MPLM can be potentiated by the anandamide uptake inhibitor AM404, and by a general protease inhibitor phenylmethylsulphonyl fluoride (PMSF) that is known to inhibit FAAH. More specifically, experiments with guinea pig MPLM have shown PMSF to potentiate anandamide induced inhibition of electrically evoked contractions and AM404 to potentiate anandamide induced inhibition of resiniferatoxin evoked acetylcholine release. However, these data should be interpreted with caution as there is now evidence that AM404 shares the ability of resiniferatoxin to activate vanilloid receptors. It is also noteworthy that the endocannabinoid 2-AG was first isolated from canine small intestine.

While there is evidence for the presence in guinea pig ileum of anandamide uptake and metabolising mechanisms, there is none that anandamide is released when this tissue is electrically stimulated. Thus not all ligands capable of antagonising CB, mediated inhibition of electrically evoked contractions of guinea pig MPLM share the ability of SR141716A to enhance such contractions when administered alone and, when added by itself, PMSF does not mimic the inhibitory effect of anandamide on electrically evoked contractions of guinea pig MPLM. Moreover, while the endocannabinoid 2-AG has been detected in the small intestine of dog, there is no evidence for the presence of anandamide in the digestive tract. It seems likely therefore that the ability of SR141716A to produce inverse cannabimimetic effects in guinea pig ileum depends primarily on the putative inverse agonist properties of this ligand and reflects the presence in this tissue of CB, receptors in a precoupled state.

Although SR141716A enhances electrically evoked contractions of guinea pig MPLM, no such effect has been observed in human MPLM. Nor has SR141716A been found to produce effects opposite in direction to those of cannabinoid receptor agonists on threshold pressure or volume for triggering peristalsis or on longitudinal muscle reflex contraction, intestinal wall compliance, or propulsive motility measured during peristalsis in segments of guinea pig isolated ileum.

INTESTINAL MOTILITY IN THE WHOLE ANIMAL

Administration of SR141716A by itself, sometimes at doses slightly higher than those sufficient to antagonise cannabinoid receptor agonists, has been found to stimulate propulsion of non-absorbable markers through rat or mouse intestine (table 3). That this is a reflection of the inverse agonist properties of SR141716A rather than of ongoing release of an endogenous cannabinoid receptor...
agonist is suggested by data obtained in vitro (see above) and also by the observation that the anandamide uptake inhibitor AM404 does not affect passage of a charcoal meal along mouse intestine when administered alone or potentiate the inhibitory effect on charcoal meal transit of exogenously administered anandamide. It should be borne in mind however that AM404 is not only an anandamide uptake inhibitor but also a vanilloid receptor agonist and may therefore induce acetylcholine release from the small intestine (see above).

SR141716A has also been found to increase charcoal transit through the small intestine of mice exhibiting diarrhoea induced by croton oil, albeit to no greater an extent than in croton oil free mice (see also table 3). In addition, it has been shown to stimulate rat or mouse defecation in some but not all experiments and to increase mouse faecal water content and the fluid content of rat small intestine. No effect on intestinal transit has been observed in response to SR144528.

Central sites of action

There is some evidence that cannabinoid receptor agonists and SR141716A can affect gastrointestinal motility by interacting with sites in the brain. More specifically, there are reports that rat and mouse gastric emptying and intestinal transit can be altered by intracerebroventricular administration of Δ^2^-THC, cannabinol, (+)-WIN55212, or SR141716A and that the changes in intestinal transit so produced can be abolished by intraperitoneal hexamethonium. However, these central sites probably contribute relatively little to the effects of peripherally administered cannabinoids as it has been found that intracerebroventricular treatment with SR141716A antagonising the inhibitory effects on gastric and intestinal transit of intracerebroventricular (+)-WIN55212 produces no such antagonism when these inhibitory effects are provoked by intraperitoneal administration of (+)-WIN55212. Further evidence for the relatively greater importance of peripheral sites of action comes from experiments showing that the ability of intraperitoneal SR141716A to increase mouse intestinal transit and the fluid content of rat small intestine can be attenuated or abolished by atropine but not by hexamethonium or by combined administration of NK1 and NK2 antagonists. These findings point to the involvement of a tachykinin independent mechanism that relies on activation of peripheral muscarinic cholinceptors. It is also likely that (+)-WIN55212 or cannabinol inhibit croton oil induced diarrhoea by acting peripherally, as this inhibition is also not blocked by hexamethonium.

Gastrointestinal signs of tolerance and dependence

There are several reports that in vivo or in vitro pretreatment with cannabinoids can produce tolerance to the inhibitory effects of these drugs on gastrointestinal activity. More specifically, Anderson and colleagues found that mice pretreated with Δ^2^-THC 10 mg/kg orally once daily for 2–4 days developed tolerance to the inhibitory effect of this cannabinoid on the gastrointestinal passage of a charcoal meal. Some degree of tolerance to a challenging injection of Δ^2^-THC was still detectable even after 19 drug free days. Pertwee and colleagues pretreated mice with Δ^2^-THC 20 mg/kg subcutaneously once daily for three days, or with its vehicle Tween 80. They found that the inhibitory effect of 100 nM CP55940 on electrically evoked contractions of segments of MPLM was less in tissue that had been obtained from Δ^2^-THC pretreated mice 24–28 hours after the final injection than in tissue obtained from vehicle pre-treated animals. Similar results were found in guinea pigs pretreated with Δ^2^-THC 10 mg/kg intraperitoneally once daily for two days, or with its vehicle Tween 80. In these experiments, Δ^2^-THC pretreatment was found to produce significant dextral shifts in the log concentration-response curves of Δ^2^-THC and CP55940 for inhibition of electrically evoked contractions of MPLM, without inducing tolerance to the contractile effect of acetylcholine. It also decreased the size of the maximal responses to Δ^2^-THC and CP55940, a possible indicator of a reduction in cannabinoid receptor density and/or coupling efficiency. Basilico and colleagues exposed segments of guinea pig MPLM for five hours to a concentration of (+)-WIN55212 (50 nM) expected to reduce the amplitude of electrically evoked contractions by 50%. At the end of this period, the amplitude of evoked contractions was no less in the (+)-WIN55212 treated tissues than in untreated tissues, indicating the development of tolerance. Guagnini and colleagues preincubated MPLM of human ileum or distal jejunum at 18°C for 48 hours with 10 µM (+)- or (−)-WIN55212. Preincubation with the (+)-enantiomer but not with (−)-WIN55212 completely abolished the inhibitory effect of (+)-WIN55212 on electrically evoked contractions of MPLM. They also found that twitch responses were markedly enhanced by 1 µM SR141716A in tissues that had been preincubated with (+)-WIN55212 but not in tissues that had been preincubated with (−)-WIN55212 or with the drug vehicle DMSO (SR141716A does not induce inverse cannabimimetic effects in human MPLM). Accordingly, this preparation may serve as an in vitro model for cannabinoid dependence.

In line with the observation of Guagnini and colleagues, a finding by Lichtman and colleagues that one of the withdrawal signs induced by SR141716A in Δ^2^-THC tolerant dogs is diarrhoea. It is noteworthy however that SR141716A (1 µM) has been reported not to induce “withdrawal” contractions in resting (+)-WIN55212 tolerant guinea pig MPLM.

In their experiments with guinea pig MPLM, Basilico and colleagues also obtained evidence for the development of cross tolerance between (+)-WIN55212 and morphine. They observed significant dextral shifts in the log concentration-response curve for inhibition of electrically evoked contractions of both (+)-WIN55212 and morphine in MPLM that had been preincubated for five hours with either of these agonists. In contrast, tolerance to the inhibitory effect of normorphine (or clonidine) on electrically evoked contractions was not detected by Pertwee and colleagues in guinea pig MPLM that had been rendered cannabinoid tolerant by in vivo pretreatment with Δ^2^-THC.

Finally, there is evidence that cannabinoid receptor agonists can suppress increases in gastrointestinal activity precipitated by naloxone in morphine dependent animals. Hine and colleagues found that Δ^2^-THC but not cannabidiol produced a dose related blockade of naloxone

Table 3: Effect of SR141716A on transit of an orally administered non-absorbable marker through the small intestine of fasted mice

<table>
<thead>
<tr>
<th>Marker</th>
<th>Route and time of administration</th>
<th>Dose or potency</th>
<th>Effect on transit*</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charcoal (20 min)</td>
<td>sc before marker</td>
<td>1 mg/kg</td>
<td>+17.5%</td>
<td>48</td>
</tr>
<tr>
<td>Carmine (20 min)</td>
<td>ip at 20 min</td>
<td>LED=1.25 mg/kg ca.</td>
<td>+33%</td>
<td>49</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>ip at 20 min</td>
<td>LED=1 mg/kg</td>
<td>+48%</td>
<td>50</td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>ip at 20 min</td>
<td>ED₅₀=375 nmol/mouse</td>
<td>Increase 51</td>
<td></td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>iv at 20 min</td>
<td>ED₅₀=117 nmol/mouse</td>
<td>Increase 51</td>
<td></td>
</tr>
<tr>
<td>Charcoal (20 min)</td>
<td>ip at 20 min</td>
<td>ED₅₀=418 nmol/mouse</td>
<td>Increase 51</td>
<td></td>
</tr>
</tbody>
</table>

Time after administration of the non-absorbable marker at which the mice were killed is shown in parentheses. *Compared with vehicle control. LED, lowest effective dose investigated.

In line with the observation of Guagnini and colleagues, a finding by Lichtman and colleagues that one of the withdrawal signs induced by SR141716A in Δ^2^-THC tolerant dogs is diarrhoea. It is noteworthy however that SR141716A (1 µM) has been reported not to induce “withdrawal” contractions in resting (+)-WIN55212 tolerant guinea pig MPLM.

In their experiments with guinea pig MPLM, Basilico and colleagues also obtained evidence for the development of cross tolerance between (+)-WIN55212 and morphine. They observed significant dextral shifts in the log concentration-response curve for inhibition of electrically evoked contractions of both (+)-WIN55212 and morphine in MPLM that had been preincubated for five hours with either of these agonists. In contrast, tolerance to the inhibitory effect of normorphine (or clonidine) on electrically evoked contractions was not detected by Pertwee and colleagues in guinea pig MPLM that had been rendered cannabinoid tolerant by in vivo pretreatment with Δ^2^-THC.

Finally, there is evidence that cannabinoid receptor agonists can suppress increases in gastrointestinal activity precipitated by naloxone in morphine dependent animals. Hine and colleagues found that Δ^2^-THC but not cannabidiol produced a dose related blockade of naloxone. www.gutjnl.com

Gut: first published as 10.1136/gut.48.6.859 on 1 June 2001. Downloaded from...
induced signs of heightened gastrointestinal activity (diarrhoea and increased defecation) as well as other abstinence signs in morphine dependent rats. These findings led them to conclude that cannabinoids might have potential for the management of opioid withdrawal in the clinic. Frederickson and colleagues reported that “withdrawal” contractions induced by naloxone in ileum taken from guinea pigs that had been treated with a slow release morphine suspension could be attenuated by (−) but not by (+)-Δ⁹-THC at a concentration (95 nM) that did not affect contractions produced by acetylcholine. Morrono and colleagues reported that a cannabis extract (5.2 μM Δ⁹-THC) reduced naloxone induced “withdrawal” contractions in segments of guinea pig ileum and rabbit jejunum that had been preincubated for five minutes with morphine or with the κ opioid receptor agonist U-50,488H. Acetylcholine induced contractions were not blocked by the cannabis. Basilico and colleagues found that “withdrawal” contractions induced by naloxone in strips of guinea pig MPLM that had been rendered opioid and cannabinoid tolerant by a five hour exposure to morphine could be prevented by 50 nM (+)-WIN55212. Because CB₁ receptors can mediate morphine induced by naloxone in ileum taken from guinea pigs that have been pretreated with morphine or with the κ opioid receptor agonist U-50,488H. Acetylcholine induced contractions were not blocked by the cannabis. Basilio and colleagues found that “withdrawal” contractions induced by naloxone in ileum of guinea pig MPLM that had been rendered opioid and cannabinoid tolerant by a five hour exposure to morphine could be prevented by 50 nM (+)-WIN55212. Because CB₁ receptors can mediate suppression of acetylcholine release in the myenteric plexus (see above) and because naloxone precipitated “withdrawal” contractions of MPLM are thought to be triggered by the endogenous release of acetylcholine, 5-HT, and substance P into neuromuscular synapses, it is possible that (+)-WIN55212 attenuates these contractions by inhibiting the release of one or more of these contractile agents (see also above). Another possibility is that (+)-WIN55212 interacts directly with μ opioid receptors.

Conclusions

There is little doubt from the animal data described in this review that cannabinoids might have potential for the management of opioid withdrawal in the clinic. Frederickson and colleagues found that “withdrawal” contractions induced by naloxone in ileum of guinea pig MPLM that had been rendered opioid and cannabinoid tolerant by a five hour exposure to morphine could be prevented by 50 nM (+)-WIN55212. Because CB₁ receptors can mediate suppression of acetylcholine release in the myenteric plexus (see above) and because naloxone precipitated “withdrawal” contractions of MPLM are thought to be triggered by the endogenous release of acetylcholine, 5-HT, and substance P into neuromuscular synapses, it is possible that (+)-WIN55212 attenuates these contractions by inhibiting the release of one or more of these contractile agents (see also above). Another possibility is that (+)-WIN55212 interacts directly with μ opioid receptors.

Some of the research described in this article was supported by grants from the National Institute on Drug Abuse (DA 09158 and DA 09789) and from the Wellcome Trust.

