A shake of the head to a wink of the anus

We read the case report of Malouf and Kamm (Gut 2001;48:728–9) with interest. However, we disagree with some of the science and suggest an alternative explanation for their findings.

Firstly, there is much data to suggest that sympathetic innervation of the internal anal sphincter is in fact excitatory. The paper that they cite (from their own institution) showed that noradrenaline, the principal postganglionic neurotransmitter of the sympathetic nervous system, caused contraction of this tissue in vitro. Operative in vivo studies of presacral nerve stimulation have indeed been contradictory, showing both an increase and decrease in internal anal sphincter tone; this probably reflects little more than differences in stimulation parameters. However, sympathetic block reflects little more than differences in stimulation parameters. However, sympathetic blockade effected either by infusion of the α-adrenoceptor antagonist phenolamine or by high spinal anaesthesia produces a significant fall in internal anal sphincter tone. This is evidence of tonic, excitatory, sympathetic innervation of the internal anal sphincter, not of “extrinsic sympathetic drive which relaxes the sphincter”, as described by Malouf and Kamm.

Secondly, acetylcholine relaxes internal anal sphincter in vitro, an action blocked both by atropine and nitric oxide synthase inhibitors. This implies that acetylcholine, the principal postganglionic neurotransmitter of the parasympathetic nervous system, is inhibitory and acts via muscarinic receptors and its effects are mediated by nitric oxide. Low spinal anaesthesia has little effect on anal canal resting pressure, suggesting that there is negligible tonic parasympathetic discharge to the internal anal sphincter. We are not aware of any convincing data that enable Malouf and Kamm to make the unrefereed statement that there is “normal extrinsic parasympathetic excitation [sic] drive to the internal anal sphincter”. We would dispute that normally “the anal canal remains closed before, during, and after examination”. When the fingertip passes into the rectum of a non-sphinng injury patient, a digital examination is normally short lived and ceases when the finger is withdrawn. As stated in their letter, we believe it is this failure of the sphincter to return to a closed state that may be a pointer to underlying neurological disease.

O M Jones
Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK and Department of Colorectal Surgery, John Radcliffe Hospital, Oxford OX3 9DU, UK

A F Brading
Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK

N J McC Mortensen
Department of Colorectal Surgery, John Radcliffe Hospital, Oxford OX3 9DU, UK

Correspondence to: O Jones; oliver.jones@pharm.ox.ac.uk
given in the text but the figures states 10 rats/group. Was this 10 rats at four days after induction of colitis or 10 rats at the beginning of the experiment (day 0)? If 10 rats remained at four days, what was the starting number? presumably many more with a predicted mortality of about 60%.

A Ballinger
O Azooz
Department of Adult and Paediatric Gastroenterology, St Bartholomew’s and the Royal London School of Medicine and Dentistry, London
E1 2AT, UK; a.b.ballinger@mds.qmw.ac.uk

Reference

Authors’ reply
We very much appreciate the interest of Drs Ballinger and Azooz in our work.

In 1997, we discovered that calpain inhibitor I exerted potent anti-inflammatory effects in rats with endotoxin shock.1 We therefore speculated that calpain inhibitor I may reduce the degree of inflammation and tissue injury associated with other models of inflammation, including colitis. The model of hapten induced colitis used by us is similar, but not identical, to the one introduced by John Wallace and colleagues in 1989 (Gut 2001;48:478–87) in which instillation of a solution containing a “barrier breaker” (0.25 ml of 50% ethanol) and the hapten 2,4,6-trinitrobenzene sulphotonic acid (TNBS 50 mg) are used to cause colonic ulceration and inflammation in the rat. Clearly, the severity of colitis caused and the mortality of any given model may vary with the experimental design used. We would like to propose that the high mortality associated with our model of hapten induced colitis is a reflection of the fact that our animals were exposed to the hapten for a relatively long period. As stated in the methods section of our article, adult male Wistar rats were anaesthetised with isoflurane and received intrarectal administra-

8

tion of 25 mg of dinitrobenzene sulphonic acid (DNBS) for a period of 15 minutes. TNBS control, n=18; DNBS rats treated with calpain inhibitor I, n=13.

In the final paragraph of our article (Gut 2001;48:478–88), we stated that our findings suggest that calpain inhibitor I may be useful in conditions associated with local or systemic inflammation, including induction of colitis and experimentally induced bowel disease. In the last few months, we have reported that calpain inhibitor I also attenuates the multiple organ injury and dysfunction associated with haemorrhagic shock2 as well as the tissue injury and reduce symptoms with pleuritis (induced with carrageenan) and arthritis (in-

2

duced by collagen).3 All of these findings support the view4 that calpain inhibitor I exerts potent anti-inflammatory effects in vivo.

C Thiemermann
William Harvey Research Institute, St Bartholomew’s and the Royal London School of Medicine and Dentistry, London, UK

S Cuzzocrea
Department of Pharmacology, University of Messina, Italy

Correspondence to: C Thiemermann; c.thiemermann@mds.qmw.ac.uk

References

Mucosal barrier function and the commensal flora
We read with interest the article by Garcia-Lafuente et al (Gut 2001;48:503–7). Their results demonstrate that strains of endemic gut bacteria can affect gut mucosal barrier function, as measured by intestinal permeability, and that the effect may be potentially beneficial or harmful depending on the specific bacterial strains administered. These findings help to explain and corroborate the interesting findings that have been emerging from clinical and experimental studies investigating the use of probiotics in inflammatory bowel disease (IBD). It is now known that development of colonic inflammation in genetic models of IBD is dependent on the presence of intestinal bacteria. In human studies, an imbalance in colonic bacteria has been described in patients with IBD with a reduction in potentially protective organisms such as bifidobacteria and lactoba-
cilli and an increase in Escherichia coli. Furthermore, treatment with probiotics such as lactobacilli has been shown to reduce intestinal inflammation and inflammatory response in experimental models of colitis and IBD. We have recently investigated the effect of Lactobacillus plantarum species 299 on the gut mucosal barrier both in patients with ulcerative colitis and in the interleukin 10 knockout mouse model of colitis.4 This probiotic was found to improve gut mucosal barrier function in the mouse model, as measured by a reduction in gut permeability and a reduction in the concentration of circulating antibody to Escherichia coli. These changes correlated posi-

tively with a reduction in colonic inflammation. In a study of patients with ulcerative colitis, Lactobacillus plantarum probiotic therapy was also found to improve the gut mucosal barrier function, as measured by a reduction in the circulating antibody to endotoxin.5 The findings of our studies and those of Garcia-Lafuente et al suggest that probiotics such as Lactobacillus plantarum are capable of improving gut mucosal barrier function in both normal and inflamed bowel. It is possible that this probiotic enhanced enhancement of the gut barrier may be a mechanism by which probiotics are effective in reducing intestinal inflammation in experi-

mental models of colitis and IBD.

R J Kennedy, S J Kirk, K R Gardiner
Department of Surgery, the Queen’s University of Belfast, Belfast, UK

Correspondence to: Mr R J Kennedy, Department of Surgery, Institute of Clinical Science, Grosvenor Road, Belfast BT12 6BJ, UK; r.kennedy@talk21.com

References

Authors’ reply
We value the comments made by Mr Kennedy et al and are grateful to them for bringing to our attention their report to the Surgical Research Society on the effect of Lactobacillus plantarum species 299 on the gut mucosal barrier in the interleukin 10 knockout model of colitis. While we agree with their points regarding the usefulness of some probiotic strains for the prevention of gut barrier dysfunction associated with mucosal inflammatory conditions, we also would like to stress the fact that bacteria may also influence colonic barrier function in a normal setting. In our experimental model, we were able to detect changes in gut permeability to a small molecular size probe induced by commensal bacteria, without any significant effect on the lumen to blood passage of a large molecular size probe—that is, excluding changes due to epithelial cell damage. This
I suppose people still read scientific papers, or so editors of scientific journals and their publishers would like to believe, and this is the assumption implicit in the title of this excellent book. On the other hand, the abundance of reviews, summaries, and refresher courses sometimes makes me wonder who actually reads them. Apart from researchers active in their particular corner of the field and referees engaged in peer review, most people, I fancy, only read the abstract. When a while ago I was appointed to the editorship of Gut, I had my introductory meeting with Stephen Lock, the then editor of the BMJ and editor in chief of all of the BMA journals. George, he said, there is nothing so ephemeral as a scientific paper. The feeling of disbelief, surprise, and shock I felt then is still clear in my memory but of course he was right. How many of us consult even the really great past papers in gastroenterology—for example, Sir James Black et al’s “Definition and antagonism of histamine H2 histamine receptors” (Nature 1972;236:385). One generally gets the feeling that most of us find it very difficult to compare the current value of scientific research that thuds on one’s desk every month, or appears on our screens. The drive to publish is well documented and generated by genuine discovery, by career advancement, or by marketing needs. Publication of research in hepatology and gastroenterology has been balkanised between some 80 journals. However, more does not necessarily mean better and this is where Trisha Greenhalgh’s book comes in. It really contains what it says on the cover, namely the basis of evidence based medicine. This is the second edition, the first having appeared in 1997. The text has been brought up to date and deals with current shibboleths, but also from texts unlikely to be on the usual gastroenterology journals, and gives sound and irreverent advice on how to plan research and how to write it up. Those embarking on a medical career will find it invaluable but so will seasoned practitioners in any specialty.

This appears to be the first volume of a planned series entitled Clinical Gastroenterology, intended mainly for clinically orientated gastroenterologists aiming to keep their noses ahead of the field without going into full training. The editor is James Freton and those who have been involved with him in workshops and symposia will not be surprised by the precision and clarity he has drawn from his authors. This is an important feature because despite being a relatively small volume of approximately 70 000 words, it manages to comprehensively cover all aspects of peptic ulcer disease, functional and undiagnosed dyspepsia, and gastrooesophageal reflux disease. The 18 contributors are established experts based in the USA. With the promotion of managed health care in that country it is understandable that discussions encompass not only the clinical but also the cost effectiveness of diagnostic and therapeutic policies. Each chapter is fully referenced, not only from the usual gastroenterology journals, but also from guidelines, for example the chapter on papers that report drug trials is very valuable and gives sound and relevant advice on how to deal with drug reps and drug advertising, especially important at present when more and more research seems to be controlled by the pharmaceutical giants. The book has been highly successful, and has been translated into six languages. Dr Greenhalgh writes very well and what might have been a rather dry text is enlivened and made enjoyable by her informal and iconoclastic style, and by practical examples.

Research that is covered and there are numerous and very helpful checklists and appendices. If, like me, you are a self taught Medline hacker, the book is worth buying just for the editorial nature of the disease and includes an excellent chapter on rebleeding and death are delineated and sufficient evidence is quoted to tempt even the most sceptical reader to at least consider the possible benefits of surveillance programmes. Nevertheless, sufficient evidence is quoted to tempt even the most sceptical reader to at least consider the possible benefits of surveillance programmes. Although most UK gastroenterologists accept that non-cardiac chest pain is often of non-oesophageal origin, they would be less certain about the role of GORD in laryngeal symptoms, asthma, or chronic cough. Pandolfino and Kahrials provide persuasive evidence to support these concepts but there will be general relief that a three month therapeutic trial of a proton pump inhibitor is the favoured initial approach to management, and that pH and manometric studies should be reserved for resistant cases or prior to referral for fundoplication.

Management protocols are increasingly demanded and those looking for a resource to devise acute non-variceal bleeding guidelines will welcome Machicado and Jensen’s chapter. The clinical, laboratory, and endoscopic risk factors for rebleeding and death are delineated in detail and sound guidelines for endoscopic intervention are substantiated.

The retention of the confusing term “non-ulcer dyspepsia)” rather than “functional dyspepsia) is a minor irritation. Nevertheless, the chapter covering this nebulous topic appropriately reviews current opinion and concludes that Helicobacter pylori and gastric acid have little to do with endoscopically negative bellies. For those who, like your reviewer, need to update their lectures, this book will be an invaluable aid. If subsequent volumes are of comparable quality the series deserves to find a place on the shelves of UK gastroenterology departments, although the price of £99 for a 200 page volume may discourage its purchase.

M Lancaster-Smith

In addition to the above, Blancha

G Misiewicz

Diseases of the Gastrooesophageal Mu cosa. The Acid-Related Disorders

How to Read a Paper

BOOK REVIEWS

I

How to Read a Paper

NOTICES

Broad Medical Research Program—Inflammatory Bowel Disease Grants

Funds for inflammatory bowel disease (IBD) research are available immediately from the Broad Medical Research Program of The Eli and Edythe L Foundation for innovative projects regarding etiology, therapy, or prevention. Grants totalling approximately US$100 000 per year are available for early clinical projects. Larger requests may be considered. Initial letter of interest (no submission deadline), simple application, rapid (60 day) peer review, and funding. Criteria for funding includes new ideas or directions, scientific excellence, and originality. Early exploratory projects, scientists not currently working in IBD, and/or interdisciplinary efforts are encouraged. Further information: Marciana Poland, Research Administrator, Broad Medical Research Program, 10900 Wilshire Blvd., 12th Floor, Los Angeles, CA 90024-6352, USA. Tel: +1 310 954 5091; email: info@broadmedical.org; website: www.broadmedical.org

9th Symposium on Neurogastroenterology & GI Motility

This will be held on 22–24 March 2002 in Iowa, USA. Further information: Louis G Crist, Director of Continuing Medical Education, University of Iowa College of Medicine, 300 Medicine Administration Building, Iowa City, IA 52242-1101, USA. Tel: +1 319 335 8599; email: louis-crist@uiowa.edu

European Association for the Study of the Liver: 37th Annual Meeting

The EASL Annual Meeting will be held on 18–21 April 2002 in Madrid, Spain. Further information: EASL Liaison Bureau, c/o Kennes International, 17, rue du Cendrier, PO Box 1726, CH-1211 Geneva, Switzerland. Tel: +41 22 908 04 88; fax: +41 22 732 28 50; email: info@easl.ch; website: www.easl.ch