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Background: We have previously shown that the non-selective cyclooxygenase (COX) inhibitor
indomethacin retards recovery of intestinal barrier function in ischaemic injured porcine ileum.
However, the relative role of COX-1 and COX-2 elaborated prostaglandins in this process is unclear.
Aims: To assess the role of COX-1 and COX-2 elaborated prostaglandins in the recovery of intestinal
barrier function by evaluating the effects of selective COX-1 and COX-2 inhibitors on mucosal recovery
and eicosanoid production.
Methods: Porcine ileal mucosa subjected to 45 minutes of ischaemia was mounted in Ussing
chambers, and transepithelial electrical resistance was used as an indicator of mucosal recovery. Pros-
taglandins E1 and E2 (PGE) and 6-keto-PGF1α (the stable metabolite of prostaglandin I2 (PGI2)) were
measured using ELISA. Thromboxane B2 (TXB2, the stable metabolite of TXA2) was measured as a likely
indicator of COX-1 activity.
Results: Ischaemic injured tissues recovered to control levels of resistance within three hours whereas
tissues treated with indomethacin (5×10−6 Μ) failed to fully recover, associated with inhibition of
eicosanoid production. Injured tissues treated with the selective COX-1 inhibitor SC-560 (5×10−6 Μ) or
the COX-2 inhibitor NS-398 (5×10−6 Μ) recovered to control levels of resistance within three hours,
associated with significant elevations of PGE and 6-keto-PGF1α compared with untreated tissues. How-
ever, SC-560 significantly inhibited TXB2 production whereas NS-398 had no effect on this eicosanoid,
indicating differential actions of these inhibitors related to their COX selectivity.
Conclusions: The results suggest that recovery of resistance is triggered by PGE and PGI2, which may
be elaborated by either COX-1 or COX-2.

The principal pharmacological target of non-steroidal anti-
inflammatory drugs (NSAIDs) is cyclooxygenase (COX),
the enzyme responsible for the production of prostaglan-

dins from arachidonic acid.1 The finding that NSAIDs can
induce gastrointestinal mucosal ulceration in patients with no
underlying intestinal disease implies that prostaglandins play
a vital physiological role in maintaining the integrity of the
gastrointestinal mucosa.2 In fact, there is considerable
evidence to support a cytoprotective role for prostaglandins in
the gut.3–5 In addition to maintenance of the mucosal barrier,
recent experimental studies indicate that certain prostagland-
ins stimulate reparative mechanisms in injured gastro-
intestinal epithelium.6–8

There are two known isoforms of COX: COX-1, which is
expressed constitutively in gastrointestinal mucosa,9 and
COX-2, which is expressed primarily in response to inflamma-
tory stimuli.10 However, the relative roles of COX-1 and COX-2
in the elaboration of prostaglandins involved in pathophysi-
ological events such as epithelial repair are unclear. For exam-
ple, mucosal healing was impaired in mice with experimen-
tally induced gastric mucosal ulcers treated with the selective
COX-2 inhibitor NS-3989 despite the fact that COX-1 was
originally credited with producing cytoprotective
prostaglandins.11 The creation of COX-1 and COX-2 null mice
would seem to be the ultimate methodology to discern the
relative roles of COX-1 and COX-2 in the maintenance and
restoration of mucosal barrier function. However, this
approach has to some extent clouded this issue because
knockout of either COX-1 or COX-2 may result in compensa-
tory increases in prostaglandin E1 and E2 (PGE) production
from the remaining COX isoform.12 This in turn may explain
unexpected findings such as the reduced susceptibility of
COX-1 knockout mice to indomethacin induced gastric
ulceration.13

It has been suggested that valid interpretations of the roles

of COX-1 and COX-2 in epithelial repair in wild-type animals

may be gained from direct comparisons between COX-2

inhibitors and conventional NSAIDs such as indomethacin.14

Thus we chose to compare the effects of selective and

non-selective COX inhibitors in a porcine model of mucosal

recovery in which we have previously demonstrated an inhibi-

tory role of indomethacin.6 In the present studies, we

compared the effects of indomethacin with the effects of the

selective COX-2 inhibitor NS-3989 15 and the selective COX-1

inhibitor SC-56016 17 on recovery of mucosal barrier function.

MATERIALS AND METHODS
Experimental animal surgeries
All studies were approved by the North Carolina State Univer-

sity Institutional Animal Care and Use Committee. Animals

were 6–8 week old crossbred (Duroc×Yorkshire×Landrace)

pigs of both sexes purchased from North Carolina State

University Porcine Educational Unit. Animals were acclima-

tised to the holding facilities at the College of Veterinary

Medicine for at least three days. Pigs were housed singularly

and maintained on a commercial pelleted feed. Pigs were held

off feed for 24 hours prior to experimental surgery. All experi-

ments were performed by the same team to minimise
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variability. A physical examination was performed on all ani-

mals by veterinary investigators (Blikslager, Zimmel) to

ensure the good health of the animals on the day of

experimental surgery. General anaesthesia was induced with

xylazine (1.5 mg/kg intramuscularly), ketamine (11 mg/kg

intramuscularly), and pentobarbital (15mg/kg intravenously)

and was maintained with intermittent infusion of pentobarbi-

tal (6–8 mg/kg/h). Pigs were placed on a heating pad and ven-

tilated with 100% O2 via a tracheotomy using a time cycled

ventilator. The jugular vein and carotid artery were cannu-

lated, and blood gas analysis was performed to confirm

normal pH, and partial pressures of CO2 and O2. Lactated

Ringer’s solution was administered intravenously at a mainte-

nance rate of 15 ml/kg/h. Blood pressure was continuously

monitored via a transducer connected to the carotid artery.

The ileum was approached via a ventral midline incision. Ileal

segments were delineated by ligating the intestinal lumen at

10 cm intervals, and subjected to ischaemia by clamping the

local mesenteric blood supply for 45 minutes. Following the

ischaemic period, pigs were killed and intestinal loops were

resected.

Ussing chamber studies
The mucosa was stripped from the seromuscular layer in oxy-

genated (95% O2/5% CO2) Ringer’s solution, and mounted in

3.14 cm2 aperture Ussing chambers, as described in previous

studies.18 Tissues were bathed on the serosal and mucosal sides

with 10 ml Ringer’s solution. The serosal bathing solution

contained 10 mM glucose and was osmotically balanced on

the mucosal side with 10 mM mannitol. Bathing solutions

were oxygenated (95% O2/5% CO2) and circulated in water

jacketed reservoirs. The spontaneous potential difference (PD)

was measured using Ringer-agar bridges connected to calomel

electrodes, and PD was short circuited through Ag-AgCl elec-

trodes using a voltage clamp that corrected for fluid resistance.

Transepithelial resistance (Ω×cm2) was calculated from spon-

taneous PD and short circuit current (Isc). If spontaneous PD

was between −1.0 and 1.0 mV, tissues were current clamped at

±100 µA for five seconds and the PD recorded. Isc and PD were

recorded every 60 minutes for 240 minutes.

Chemicals
Tissues treated with COX inhibitors were bathed in Ringer’s

containing the appropriate concentration of indomethacin

(Sigma Chemical Co., St Louis, Missouri, USA), NS-398 (ICN

Pharmaceuticals, Costa Mesa, California, USA), or SC-560

(Cayman Chemical Co., Ann Arbor, Michigan, USA) to prevent

prostaglandin production while stripping mucosa from the

seromuscular tissues. The appropriate COX inhibitors were

also added to the serosal and mucosal bathing solutions prior

to mounting tissues in Ussing chambers.

Eicosanoid analyses
Samples were taken from the serosal bathing solutions of tis-

sues after 60 minutes and 240 minutes of the experiment and

were immediately frozen in liquid N2. Samples were stored at

−70°C prior to eicosanoid analysis. Samples were analysed for

concentrations of PGE, 6-keto-PGF1α (the stable metabolite of

prostaglandin I2 (PGI2)), and thromboxane B2 (TXB2, the stable

metabolite of TXA2) using commercial ELISA kits according to

the manufacturer’s instructions (Biomedical Technologies

Inc., Stoughton, Massachusetts, USA).

Morphometric measurements
Tissues were taken immediately after ischaemia and following

the 240 minute recovery period for histological evaluation.

Tissues were sectioned (5 µm) and stained with haematoxylin

and eosin. For each tissue, three sections were evaluated by an

investigator blinded to the treatment group. Four well oriented

villi were identified in each section. Morphometric measure-

ments were performed as previously described.19 The height of

the villus, and the width at the midpoint of the villus, were

obtained using a light microscope with an ocular micrometer.

In addition, the height of the epithelial covered portion of each

villus was measured. The surface area of the villus was calcu-

lated using the formula for the surface area of a cylinder. The

formula was modified by subtracting the area of the base of

the villus, and multiplying by a factor accounting for the vari-

able position at which each villus was cross sectioned. In

addition, the formula was modified to take into account the

hemispherical nature of the villous tip.19 The percentage of the

villous surface area that remained denuded was calculated

from the total surface area of the villus and the surface area of

the villus covered by epithelium. Per cent denuded villous sur-

face area was used as an index of epithelial restitution.6

Isotope flux studies
To assess mucosal to serosal flux of mannitol, 0.2 µCi/ml of

[3H]mannitol was added to the mucosal solution of tissues.

Following a 15 minute equilibration period, standards were

taken from the bathing reservoirs. Subsequently, three one

hour fluxes were performed by taking samples from the sero-

sal bathing reservoirs. Samples were collected in scintillation

vials and assessed for β emission (counts/minutes). Mucosal

to serosal fluxes of mannitol (Jms) were determined using

standard equations.20

Gel electrophoresis and western blotting
Control and ischaemic injured mucosa was stripped in

oxygenated Ringer’s solution containing either no treatment

or indomethacin, as described for the Ussing chamber experi-

ments. Approximately half of each piece of tissue was then

snap frozen whereas the remaining tissue was recovered for

240 minutes in oxygenated Ringer’s prior to snap freezing.

Tissues were stored at −70°C prior to preparation for sodium

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE), at which time they were thawed to 4°C. Tissue portions

(1 g) were added to 3 ml of chilled RIPA buffer (0.15 M NaCl,

50 mM Tris (pH 7.2), 1% deoxycholic acid, 1% Triton X-100,

0.1% SDS), including protease inhibitors. The mixture was

homogenised on ice, centrifuged at 4°C, and the supernatant

saved. Protein analysis of extract aliquots was performed (DC

protein assay; Bio-Rad, Hercules, California, USA). Tissue

extracts (amounts equalised by protein concentration) were

mixed with an equal volume of 2× SDS-PAGE sample buffer

and boiled for four minutes. Lysates were loaded on a 10%

SDS-polyacrylamide gel and electrophoresis was carried out

according to standard protocols. Proteins were transferred to a

nitrocellulose membrane (Hybond ECL; Amersham Life

Science, Birmingham, UK) using an electroblotting minitrans-

fer apparatus according to the manufacturer’s protocol. Mem-

branes were blocked at room temperature for 60 minutes in

Tris buffered saline plus 0.05% Tween-20 (TBST) and 5% dry

powered milk. Membranes were washed twice with TBST and

incubated for one hour in primary antibody (COX-1 or COX-2,

affinity purified goat polyclonal antibodies; Santa Cruz

Biotechnology, Inc., Santa Cruz, California, USA). After wash-

ing three times for 10 minutes each with TBST, membranes

were incubated for 45 minutes with horseradish peroxidase

conjugated secondary antibody. After washing three addi-

tional times for 10 minutes each with TBST, the membranes

were developed for visualisation of protein using an alkaline

phosphatase conjugate substrate kit (Bio-Rad).

Immunohistochemistry
Tissues were fixed in 10% neutral buffered formalin, routinely

processed for paraffin embedding, and cut into 5 µm sections.

Following placement on slides, sections were deparaffinised

and rehydrated. Slides were subsequently incubated in 3%

H2O2, washed, and subjected to pronase digestion for 10 min-

utes. Slides were washed in phosphate buffered saline (PBS)

and incubated with normal goat serum (Biogenex, San
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Ramon, California, USA) for 20 minutes. Slides were then

incubated for one hour with either rabbit antisheep COX-1

polyclonal antibody or rabbit antihuman COX-2 polyclonal

antibody (Alexis Co., San Diego, California, USA). This step

was not performed on negative control slides. Slides were

washed four times in PBS between 20 minute incubations

with biotinylated goat antirabbit antibody and streptavidin

labelled peroxidase (Biogenex). Slides were then placed in

3-amino-9-ethylcarbazole, washed in distilled water, counter-

stained with 0.5% methyl green for 30 seconds, and mounted.

Data analysis
All data were analysed using a statistical software package

(Sigmastat; Jandel Scientific, San Rafael, California, USA).

Data are reported as mean (SEM) for a given number (n) of

animals for each experiment. The statistical significance level

selected for all tests was p<0.05. Prior to ANOVA, data were

analysed to determine if they were normally distributed and

had equal variance (Levene median test). If data failed either

of these analyses, ANOVA on ranks was performed. All data

were analysed using one way ANOVA at each time point to

Figure 1 (A) Electrical responses of ischaemic injured porcine ileal mucosa to treatment with cyclooxygenase (COX) inhibitors. Forty five
minutes of ischaemia resulted in baseline transepithelial resistance (R) ∼50% that of control. Untreated ischaemic injured tissues recovered
control levels of R within 180 minutes whereas tissues treated with the non-selective COX inhibitor indomethacin (5×10−6 M) did not fully
recover. However, ischaemic injured tissues treated with the selective COX-2 inhibitor NS-398 (5×10−6 M) or selective COX-1 inhibitor SC-560
(5×10−6 M) recovered levels of R not significantly different from control within three hours. *p<0.05 versus control. Significance was determined
by one way ANOVA, n=12. (B) Mucosal to serosal fluxes (Jms) of mannitol across control and ischaemic injured tissues during a 240 minute
recovery period. Jms mannitol in ischaemic injured tissues was significantly greater than control during the first flux period (60–120 minutes)
regardless of treatment. While Jms mannitol recovered to levels not significantly different from control by 240 minutes in untreated ischaemic
injured tissues or those treated with NS-398 (5×10−6 M) or SC-560 (5×10−6 M), Jms mannitol in indomethacin treated tissues remained greater
than control levels throughout the recovery period. *p<0.05 versus control tissues. Significance was determined using one way ANOVA, n=8.
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determine if there were statistically significant differences

between treatments. Tukey’s test was used to determine

differences among treatments following ANOVA, unless

ANOVA on ranks was performed, in which case a Student-

Newman-Keuls test was performed.

RESULTS
Effect of COX inhibitors on recovery of mucosal
resistance, permeability, and morphology
Ischaemic injured porcine ileum recovered to control levels of

transepithelial electrical resistance (R) within 180 minutes

whereas R in ischaemic injured tissues treated with the non-

selective COX inhibitor indomethacin (5×10−6 M) remained

below that of control levels throughout the experiment (fig

1A). In contrast, the selective COX-2 inhibitor NS-3989 (5×10−6

M) or the selective COX-1 inhibitor SC-56016 17 (5×10−6 M) did

not impair recovery of R compared with ischaemic controls.

Similarly, mucosal to serosal fluxes of mannitol, a relatively

small macromolecule (4 Å stokes radius) that traverses tissues

via the paracellular space,21 22 decreased to control levels in

untreated ischaemic injured tissues and in tissues treated with

NS-398 or SC-560 within 180 minutes, whereas in tissues

treated with indomethacin, mannitol fluxes remained signifi-

cantly elevated above control levels for the duration of the 240

minute recovery period (fig 1B).

Histological evaluation of tissues immediately following the

45 minute ischaemic period revealed sloughing of villous tips

(fig 2A) which amounted to denudation of 16.5 (2.2)% of the

villous surface area. Blinded evaluation of tissues at the end of

the 240 minute recovery period showed 0.0 (0.0)% denudation

as a result of epithelial restitution, regardless of treatment (fig

2B–D). The degree of villous contraction was not significantly

different among treatment groups (data not shown). Treat-

ment of control tissues with COX inhibitors had no significant

effect on R levels or histological appearance of tissues over the

240 minute recovery period (data not shown).

Eicosanoid levels in COX inhibitor treated tissues
To determine if the differences in recovery of R and permeabil-

ity shown with indomethacin, NS-398, or SC-560 could be asso-

ciated with a different profile of eicosanoid production, we

measured tissue production of PGE, 6-keto-PGF1α (the stable

metabolite of PGI2), and TXB2 (the stable metabolite of TXA2).

The latter has been used as a specific indicator of COX-1 activity

in platelets23 and whole blood.24 25 As shown in fig 3A,

indomethacin and SC-560 inhibited all three eicosanoids at the

first time period (60 minutes) whereas NS-398 had no

inhibitory effect at this time. By the 240 minute measurement

period there were marked elevations in all three eicosanoids in

control and ischaemic injured tissues. However, treatment with

5×10−6 M indomethacin essentially eliminated production of all

three eicosanoids whereas the same dose of the COX-2 inhibitor

Figure 3 Eicosanoid levels in control and ischaemic injured tissues
before and after a 240 minute recovery period. (A) Prostaglandin E1

and E2 (PGE) levels were significantly reduced at the 60 minute time
period by indomethacin and SC-560. PGE levels were significantly
higher in ischaemic injured tissues at 240 minutes compared with
control tissues. Tissues treated with NS-398 had significant
reductions compared with untreated tissues whereas SC-560 had no
significant effect on PGE production at 240 minutes. (B) 6-keto-PGF1α

(the stable metabolite of prostaglandin I2 (PGI2)) levels showed trends
similar to those of PGE levels, including significant inhibition at 240
minutes by indomethacin and NS-398. (C) Levels of thromboxane B2

(TXB2, the stable metabolite of TXA2) were measured as a potential
indicator of COX-1 activity. Accordingly, TXB2 levels were elevated
to the same degree in control tissues, ischaemic injured tissues, and
tissues treated with the COX-2 inhibitor NS-398 at both time periods.
However, tissues treated with indomethacin had no significant
elevations in TXB2 during the recovery period, and tissues treated
with SC-560 had levels significantly below those of untreated tissues
at both 60 minutes and 240 minutes. Significance was determined
using one way ANOVA at each time period, n=8. Treatments with
different letters at each time period were significantly different from
one another.
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Figure 4 Electrical responses of ischaemic injured porcine ileal
mucosa to varying doses of indomethacin. Tissues treated with either
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ischaemic tissues. Significance was determined by one way ANOVA
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NS-398 only partially inhibited production of PGE and 6-keto-

PGF1α and had no inhibitory effect on TXB2 production. In con-

trast with these results, the selective COX-1 inhibitor SC-560 did

not significantly inhibit PGE or 6-keto-PGF1α at 240 minutes but

significantly inhibited TXB2 production.

Response to varying doses of indomethacin and
NS-398
The results shown in fig 3 suggested that the differences in

eicosanoid production in the presence of the different COX

inhibitors might be due to a relative difference in sensitivity of

the two COX enzymes to the inhibitors. To test this possibility,

we performed experiments in which the doses of indometh-

acin or NS-398 were serially diluted or concentrated,

respectively. Although a 10-fold dilution of indomethacin

(5×10−7 M) inhibited recovery of R to the same extent as the

original dose, a 100-fold dilution (5×10−8 M) permitted tissues

to recover to levels similar to those of untreated ischaemic

injured tissues (fig 4). This recovery of R at the 100-fold dilu-

tion of indomethacin correlated with significant elevations in

PGE and 6-keto-PGF1α production measured at 240 minutes of

recovery (fig 5B, C). In contrast, no significant elevation in

TXB2 production at any dose of indomethacin was obtained. In

the converse experiment with NS-398, a 10-fold greater

concentration (5×10−5 M) had no inhibitory effect on recovery

of R (fig 6A) and no additional effect on eicosanoid production

(fig 7) whereas a 100-fold increase in concentration of NS-398

(5×10−4 M) inhibited recovery of R and completely inhibited

production of all three eicosanoids.

COX western blots
Although the above experiments suggested that a difference

in sensitivity of COX-1 and COX-2 for the inhibitors could

exist, possible changes in the concentration of active enzyme

during the 240 minutes of the experiment could make such an

interpretation difficult. Therefore, the relative concentrations

of COX-1 and COX-2 protein were determined by western blot

on control and ischaemic injured tissues prior to and following

the 240 minute recovery period. COX-1 protein levels were

similar in control and ischaemic injured tissues prior to recov-

ery (0 minutes; fig 8). COX-1 protein levels appeared slightly

elevated in control tissues following the recovery period (240

minutes) whereas there were no detectable elevations in

COX-1 levels in ischaemic injured tissues. Treatment with

indomethacin did not appear to have any apparent effect on

COX-1 protein (fig 8). Western blot for COX-2 revealed

evidence for some COX-2 protein in control tissues but there

was marked expression of COX-2 in ischaemic injured tissues.

Comparison of tissues immediately following ischaemia (0

minutes) and after recovery (240 minutes) showed little

difference in stain intensity, suggesting rapid upregulation of

COX-2 during ischaemia with sustained protein levels during

the 240 minute recovery. Indomethacin appeared to slightly

decrease expression of COX-2.

COX immunohistochemistry
To determine the location of the two COX enzymes in this tissue,

we performed immunohistochemical analyses immediately

after ischaemic injury and following the recovery period. Tissues

stained with secondary antibody alone were negative for stain

uptake whereas tissues exposed to COX-1 or COX-2 antibody

revealed the presence of these proteins in ischaemic injured tis-

sues (fig 9). COX-1 was noted in intestinal crypt epithelial cells

Figure 5 Elaborated eicosanoid levels in response to varying
doses of indomethacin. Prostaglandin E (PGE) (A) and 6-keto-PGF1α

(B) levels were significantly elevated in tissues treated with 5×10−8 M
indomethacin but fully inhibited by 5×10−6 M and 5×10−7 M
indomethacin. (C) There were no significant elevations in
thromboxane B2 (TXB2) regardless of the dose. *p<0.05 versus
control tissue at 60 minutes. Treatments with different letters at 240
minutes were significantly different from one another. Significance
was determined using one way ANOVA, n=8.
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following ischaemic injury (fig 9B) and the recovery period (fig

9D). Staining for COX-2 was noted predominantly in sloughing

epithelium following ischaemic injury (fig 9F) and repairing

villous epithelium following the recovery period (fig 9H). Stain-

ing for COX-2 was also detected in lamina propria mononuclear

cells beneath injured or repairing epithelium. There was no

apparent effect of indomethacin treatment on COX-1 or COX-2

staining (not shown).

DISCUSSION
Although previous studies have evaluated the importance of

COX-2 in mucosal repair9 and the importance of COX-1 and

COX-2 in maintenance of mucosal barrier function,26–29 it has

been difficult to develop a clear understanding of the relative

roles of these enzymes. One reason for this is the inherent

complexity of the models used. For example, knockout of one

of the COX enzymes may result in compensatory upregulation

of activity of the other COX isoform.12 Therefore, it is difficult

to apply information from such COX knockout models to

wild-type animals that may express both COX enzymes.30

However, not all studies using COX null animals agree on

compensatory increases in eicosanoids,26 which compounds

the difficulty of interpreting COX knockout studies. On the

other hand, in wild-type animals, interpretation of the relative

production of eicosanoids such as PGE by the two COX

enzymes is hampered by the fact that both COX-1 and COX-2

produce PGE.26 Furthermore, COX-2 is typically upregulated in

damaged mucosa in wild-type animals9 31 32 so that its

contribution to eicosanoid production may change over time.

In the present study, we were able to circumvent these latter

difficulties. For example, COX-1 and COX-2 were expressed at

stable levels throughout the recovery period commencing

immediately following the injurious event. Furthermore, it

appears that TXB2 is produced by COX-1 in ischaemic injured

porcine mucosa because the selective COX-1 inhibitor SC-560

significantly inhibited TXB2 production whereas the selective

COX-2 inhibitor NS-398 had no effect on TXB2 production

unless it was given at very high doses. Such a link between

COX enzymes and specific eicosanoid production has been

detected in other tissues and may result from a link between

specific COX isoforms and TXA2 synthase.33

The results of our study are consistent with the hypothesis

that PGE and PGI2 produced by either COX-1 or COX-2 are

capable of triggering full recovery of mucosal barrier function.

Evidence that elaboration of these eicosanoids by COX-1 can

stimulate recovery includes: (1) ischaemic injured tissues

treated with the selective COX-2 inhibitor (NS-398) made a

full recovery at doses as high as 5×10−5 M; (2) at doses of

NS-398 that allowed mucosal recovery, there was no inhibition

of TXB2, and continued moderate production of PGE and

6-keto-PGF1α. Evidence that COX-2 elaborated eicosanoids can

stimulate recovery includes: (1) treatment with the selective

COX-1 inhibitor SC-560 permitted full recovery of barrier

resistance despite significant inhibition of TXB2 production;

(2) low doses (5×10−8 M) of indomethacin allowed full recov-

ery of barrier resistance in the presence of significant

elevations in PGE and 6-keto-PGF1α while continuing to fully

inhibit TXB2. However, these data indicate that some degree of

inhibition of prostanoids can be tolerated without affecting

recovery. We believe that our data can best be explained by an

apparent minimal concentration of prostanoids, particularly

PGE, which can stimulate recovery. For example, 10−8 M

indomethacin allows full recovery (fig 4) in the presence of

120 (15) pg/ml PGE (fig 5) whereas higher doses of

Figure 7 Elaborated eicosanoid levels in response to varying
doses of NS-398. Production of prostaglandin E (PGE) (A),
6-keto-PGF1α (B), and thromboxane B2 (TXB2) (C) was nullified by
treatment with 5×10−4 M NS-398 compared with treatment with
lower doses of NS-398. Treatments with different letters were
significantly different from one another. Significance was determined
with one way ANOVA, n=8.
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Figure 8 Western blot analysis for cyclooxygenase 1 (COX-1) and
cyclooxygenase 2 (COX-2) protein in ileal mucosa before (0) and
after (240) a four hour recovery period. All lanes were loaded with
an equal amount of protein. COX-1 protein levels appeared slightly
elevated in control tissues following the recovery period (240
minutes) whereas there were no detectable elevations in COX-1
levels in ischaemic injured tissues. Treatment with indomethacin
(5×10−6 M) had no apparent affect on COX-1 protein levels. Western
blots for COX-2 revealed some evidence of COX-2 protein in control
tissues but there was marked expression of COX-2 in ischaemic
injured tissues. Comparison of tissues immediately following
ischaemia and after the recovery period revealed little difference in
stain intensity. Indomethacin appeared to slightly decrease the
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ovine electrophoresis standard (Cayman Chemical, Ann Arbor,
Michigan, USA). Blots are representative of three separate
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indomethacin with corresponding lower concentrations of

PGE (<20 pg/ml) do not allow recovery. Similarly, 10−4 M

NS-398 inhibits full recovery (fig 6) in the presence of 55 (14)

pg/ml PGE whereas lower doses of NS-398 with corresponding

higher concentrations of PGE (>110 pg/ml) allow full

recovery. Thus we propose that a minimal concentration of

∼110 pg/ml PGE by 240 minutes is required for full recovery in

this model.

Some additional findings related to eicosanoid production

(fig 3) suggest that COX-1 is responsible for a greater

proportion of prostanoid elaboration during the early phase of

mucosal recovery whereas COX-2 may be responsible for

greater prostanoid production during the latter period of

mucosal recovery. For example, PGE, 6-keto-PGF1α, and TXB2

were all significantly inhibited by SC-560 and indomethacin at

the 60 minute time period but not by NS-398. On the other

hand, PGE and 6-keto-PGF1α were significantly inhibited by

NS-398 and indomethacin at the 240 minute time period but

not by SC-560. However, data on SC-560 suggest that at 5×10−6

M, this agent was not fully inhibiting COX-1. Thus although

TXB2 was significantly inhibited by SC-560, it was not fully

inhibited. It is therefore possible that at a dose of SC-560 that

was high enough to fully inhibit TXB2, significant inhibition of

PGE and 6-keto-PGF1α would be detected that should

correspond to that fraction of these prostanoids that were not

inhibited by NS-398.

A recent study has shown that both COX-1 and COX-2 con-

tribute to homeostasis of the mucosal barrier. For example,

COX-1 or COX-2 null mice demonstrated increased colonic

mucosal ulceration in response to dextran sodium sulphate

compared with wild-type controls.26 Furthermore, there was

an additive increase in susceptibility to dextran sodium

sulphate induced mucosal injury in COX-1 null mice treated

with NS-398.26 Whether such changes in mucosal ulceration

resulted from changes in mucosal susceptibility to dextran

sodium sulphate induced injury or differences in the rate of

mucosal recovery was not clear. Studies on recovery of

pre-existent injury in wild-type animals do not provide firm

conclusions on the role of COX isoforms. For example, NS-398

retarded gastric ulcer repair in mice,9 and exacerbated colonic

inflammation in rats,34 but these findings were not compared

with the effects of a relatively non-selective COX inhibitor

such as indomethacin or with a selective COX-1 inhibitor. In

studies where comparisons between selective COX-2 inhibi-

tors and non-selective COX inhibitors were performed, both

classes of drugs were shown to inhibit repair of gastric ulcers

to a similar extent,27–29 suggesting that COX-2 rather than

COX-1 eicosanoids are required for recovery of ulcerated gas-

tric mucosa. However, the relative roles of COX-1 and COX-2

could not be distinguished because there were no experiments

in which COX-1 was selectively inhibited. We approached this

problem by comparing the effects of selective inhibitors of

COX-1 or COX-2 with that of the non-selective COX inhibitor

indomethacin. In so doing, we came to the conclusion that

both COX-1 and COX-2 play a role in mucosal reparative

events in ischaemic injured small intestine.

The finding that indomethacin showed evidence of COX-1

selectivity at low doses was not entirely unexpected as many

of the so-called non-selective COX inhibitors show some

degree of specificity for COX-1. In particular, indomethacin

and aspirin show a relatively high degree of specificity for

COX-1 compared with agents such as ibuprofen, which essen-

tially inhibits both COX enzymes to the same degree.35 36 None

the less, indomethacin appears to be a potent COX inhibitor as

at doses as low as 5×10−7 M, indomethacin inhibited all eicosa-

noid production. However, some degree of selectivity for

COX-1 became evident at a dose of 5×10−8 M.

The mechanism by which COX elaborated eicosanoids

stimulate recovery of ischaemic injured porcine epithelium

remains to be fully elucidated but it appears to involve closure

of dilated paracellular spaces rather than an effect on epithe-

lial restitution.6 37 38 Such a mechanism would explain the lack

Figure 9 Immunohistochemical analysis of ischaemic injured tissues before and after a 240 minute recovery period. For purposes of
comparison, paired photomicrographs are presented for tissues stained with only the secondary antibody or for tissues also treated with
anti-cyclooxygenase 1 (COX-1) or anti-COX-2. (A) Tissues treated only with secondary antibody showed the presence of only the counterstain
whereas tissues additionally treated with anti-COX-1 immediately following ischaemia (B) showed COX-1 protein localised to crypt epithelium.
(C, D) Similar results for COX-1 staining were noted after the 240 minute recovery period. (E) Tissues treated only with secondary antibody
showed the presence of only the counterstain whereas tissues additionally treated with anti-COX-2 immediately following ischaemia (F) showed
COX-2 protein localised to sloughing villous epithelium and lamina propria mononuclear cells. (G, H) Similar results for COX-2 staining were
noted after the 240 minute recovery period except that COX-2 was localised to repairing epithelium (1 cm bar=50 µm).
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of differences among the various treatments when evaluating

histological indices of restitution in the present study (fig 2).

In fact, in previous studies, we have shown that epithelial res-

titution in this model is near complete within 60 minutes38 at

a time when there is little evidence of recovery of transepithe-

lial resistance. Recovery of resistance is subsequently associ-

ated with closure of inter-epithelial spaces within restituted

epithelium.37 38 Thus restitution is likely a critical initial step in

the repair process prior to recovery of paracellular resistance.

The rapidity of restitution shown in our model is similar to

other ex vivo model systems. For example, in guinea pig ileum,

treatment with detergent (Triton-X 100) resulted in sloughing

of epithelium from the tips of villi that was able to restitute

within 60 minutes following detergent washout.39 40 The rate

of epithelial restitution in ex vivo model systems may be more

rapid than in in vitro models of restitution41 because of the

absence of concurrent reparative mechanisms in vitro. For

example, villous contraction in ex vivo models dramatically

reduces the denuded surface area that remains to be restituted

such that far fewer cells are required to reseal a defect.39 We

have previously documented significant decreases in villous

height during recovery of ischaemic injured porcine ileum as

evidence of this mechanism.6

The fact that either COX-1 or COX-2 elaborated eicosanoids

appeared equally capable of stimulating mucosal recovery is

somewhat puzzling given the immunohistochemical localisa-

tion of these enzymes. COX-2 was expressed within repairing

epithelium and adjacent mononuclear cells but COX-1 was

localised to crypt epithelium, which raises the question as to

how prostanoids released by crypt epithelium might stimulate

recovery of injured villous epithelium. We are confident of our

immunohistochemical results because COX-1 has been

localised to crypt epithelium in the mouse,42 and humans,31

and COX-2 has been localised to repairing epithelium and

subepithelial mononuclear cells in patients with Crohn’s

disease.31 One possible integrative signalling mechanism

whereby prostanoids released by crypt epithelium might

stimulate recovery of villous epithelium is the enteric nervous

system, particularly as it is now well established that certain

prostaglandins, notably PGE2 and PGI2, are powerful

neuromodulators.43 However, a full understanding of such

mechanisms will require further study.
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