INK4a-ARF alterations in liver cell adenoma

A Tannapfel, C Busse, F Geißler, H Witzigmann, J Hauss, C Wittekind

Gut 2002;51:253–258

Background: The INK4a-ARF (CDKN2A) locus on chromosome 9p21 encodes two tumour suppressor proteins, p16\(^{INKA}\) and p14\(^{ARF}\), whose functions are inactivated in many human cancers.

Aims: To evaluate p14\(^{ARF}\) and p16\(^{INKA}\) alterations in liver cell adenoma.

Methods: After microdissection, DNA from 25 liver cell adenomas and corresponding normal liver tissue were analysed for INK4a-ARF inactivation by DNA sequence analysis, methylation specific polymerase chain reaction, restriction enzyme-related polymerase chain reaction (RE-PCR), mRNA expression, microsatellite analysis, and immunohistochemistry. In addition, microdeletion of p14\(^{ARF}\) and p16\(^{INKA}\) were assessed by differential PCR.

Results: Methylation of p14\(^{ARF}\) was found in 3/25 cases (12%) and alterations in p16\(^{INKA}\) occurred in 6/25 liver cell adenomas (24%) which correlated with loss of mRNA transcription. We failed to detect microdeletions or specific mutations of both exons. p16\(^{INKA}\) methylation appeared in the context of an unmethylated p14\(^{ARF}\) promoter in six cases. In normal liver tissue, p14\(^{ARF}\) or p16\(^{INKA}\) alterations were not observed.

Conclusions: Our data suggest that p14\(^{ARF}\) methylation occurs independently of p16\(^{INKA}\) alterations in liver cell adenomas. Furthermore, methylation of p14\(^{ARF}\) and p16\(^{INKA}\) may be a result of cell cycle deregulation and does not seem to be a prerequisite of malignancy.

Liver cell adenoma (LCA) is the most important benign epithelial tumour of the liver, with an incidence of approximately 3/100 000 new cases per year.\(^1\) LCAs are pathogenetically related to the use of oral contraceptives, androgenic steroid therapy, and have also been reported in association with glycogen storage disease. Microscopically, the neoplasm is composed of well-differentiated uniform cords of proliferating hepatocytes. Normal portal tracts are absent, tumour cells are uniform in size and shape but atypical pleomorphic cells with distorted hyperchromatic nuclei may be seen.\(^1\) Transformation of LCA to hepatocellular carcinoma has been described but is extremely rare.\(^2\) To date, the cellular and molecular mechanisms leading to uncontrolled proliferation of hepatocytes remain unclear. Great insights will come from integrating the signals of different pathways operating at cell cycle regulation, cellular proliferation, and apoptosis.\(^3\) There is evidence that alterations in the INK4a-ARF locus, which maps to chromosome 9p21, may contribute to the development of liver tumours.\(^4\) The INK4a-ARF or CDKN2A locus codes for two different proteins, p16\(^{INKA}\) and p14\(^{ARF}\), both involved in cell cycle regulation.\(^5\) These two proteins are characterised by two distinct promoters and first exons spliced to a common exon 2 in different reading frames; exons 1\(\alpha\), 2, and 3 for p16\(^{INKA}\) and exons 1\(β\), 2, and 3 for p14\(^{ARF}\).\(^5\) The tumour suppressor gene p16\(^{INKA}\) is believed to encode a negative regulatory protein that controls the progression of eucaryotic cells through the G1 phase of the cell cycle by interacting with CDK4 and inhibiting its kinase activity.\(^5\) In the absence of functional p16 protein, CDK4 binds to cyclin D and phosphorylates pRb which stimulates entry into the S phase.\(^6\) The p16\(^{INKA}\) gene is inactivated by mutations, homozygous deletions, or gene methylation in many tumours of diverse origin.\(^7\) p14\(^{ARF}\), generated through an alternative splicing process that replaces the first exon, has been shown to function as a growth suppressor. p14\(^{ARF}\) specifically activates the p53 pathway; p14\(^{ARF}\) stabilises p53 by inhibiting MD2 dependent p53 degradation, thereby inducing cell cycle arrest or apoptosis, depending on the stimulus. Data have shown that p14\(^{ARF}\) binds to MDM2 through an NH\(_2\) terminal domain encoded by exon 1 whereas a functional domain is encoded by exon 2.\(^8\) Activation of p14\(^{ARF}\) (in response to an oncogenic signal such as c-myc, activated ras) leads to localisation and sequestration of MDM2 in the nucleolar compartment, thereby stabilising p53 by preventing MDM2-p53 from undergoing ubiquitin mediated degradation.\(^9,10\) To date, data concerning INK4a-ARF alterations in benign tumours of the liver are lacking.

To gain insights into the role of the INK4a-ARF locus in the development of LCA, mutational and expression analyses of p16\(^{INKA}\) and p14\(^{ARF}\) were performed in a large group of patients with this disease.

MATERIALS AND METHODS

Patients and tissue samples

Twenty five patients with LCA undergoing partial hepatectomy (segmental or lobar resection) between 1990 and 1999 were included in this retrospective study. Each tumour was re-evaluated with regard to typing (WHO 2000).\(^11\) In all cases, slides prepared from four different paraffin blocks of tissue, sampled from different tumour areas, were examined.

DNA samples

For each LCA sample, the histopathological lesions of interest were first identified on routinely stained slides. Parallel sections were cut with the microtome set at 6 \(\mu\)m, and the slides dried overnight at 37°C. Corresponding areas of interest were delineated and microdissected after rapid staining with haematoxylin and eosin. Thereafter the tissue was scraped off the slide (sections were covered by 25 \(\mu\)l of Tris buffer 0.05 mol) with the tip of a sealed glass pipette and then sucked into a microcapillary tube. Tissue samples were placed in Eppendorf tubes and incubated with proteinase K at 37°C overnight. Proteinase K activity was inactivated by heating to

Abbreviations: LCA, liver cell adenoma; MSP, methylation specific polymerase chain reaction; RE-PCR, restriction enzyme-related polymerase chain reaction; RT-PCR, reverse transcription-polymerase chain reaction; SSCP, single strand conformational polymorphism.
95°C for 10 minutes. For DNA extraction, standard methods were used: after incubation with proteinase K at 37°C overnight, the tissue was extracted twice in phenol and twice in chloroform, followed by ethanol precipitation.

Methylation status of the INK4a-ARF locus

The CpG WIZ p16 methylation assay kit was used (OncoInc, Gaithersburg, Maryland, USA) according to the manufacturer’s instructions. After an initial bisulphite reaction to modify the DNA, polymerase chain reaction (PCR) amplification with specific primers was performed to distinguish methylated from unmethylated DNA. Primers specific for unmethylated p16 (5'-TTATTAGGGGTGGTGGATTG-3', 5-CAACCCAAACCAAA CAAACATCAA-3') or methylated p16 (5'-TTATTAGGGGTGGTGGATTG GGGCGGATGCG-3', 5-GACCCCGACCGCAGGG TAA-3') were used. DNA (7 µg/100 µl) was denatured by 0.2 M NaOH for 10 minutes at room temperature. DNA Modification Reagent I was added, incubated for 24 hours at 50°C, and subsequently purified by DNA Modification Reagents II and III in a non-denaturing environment. Coding sequences and flanking intronic sequences of exons 1α, β, and 2 of the INK4a-ARF gene were analysed by PCR-SSCP Primer sequences for exons 1α, β,
Figure 1 Analysis of p14ARF and p16INK4a in three liver cell adenomas (case Nos 1, 10, and 11; same patients as in table 1). (A) p14ARF analysis with restriction enzyme related-polymerase chain reaction (RE-PCR). The methyl sensitive restriction enzymes used for RE-PCR are indicated (HpaII, KspI); digestion with the non-methyl sensitive enzyme MspI serves as a negative control and undigested DNA (control) serves as a positive control. The p14ARF gene is methylated in case No 11 and unmethylated in case Nos 1 and 10. (B) p16INK4a analysis with RE-PCR. Similar to (A), the methyl sensitive restriction enzymes used for RE-PCR are indicated (HpaII, KspI); digestion with the non-methyl sensitive enzyme MspI serves as a negative control and undigested DNA (control) serves as a positive control. Methylation of p16INK4a is detected in case No 1, but not in case Nos 10 and 11. (C) p16INK4a analysis using methylation specific polymerase chain reaction (MSP). Bisulphite treated DNA (which changes the unmethylated but not the methylated cytosines into uracil) is subjected to PCR amplification using primers designed to anneal specifically to the methylated bisulphite modified DNA. MSP results are expressed as unmethylated p16 specific bands (U) or methylated p16 specific bands (M). Bisulphite converted DNA from normal corresponding liver tissue (N) served as a negative control, as indicated by the presence of the U but not the M band. Similar to (B), methylation of p16INK4a was detected in case No 1 but not in case Nos 10 and 11. (D) Results of multiplex reverse transcription-PCR (RT-PCR) of p14 mRNA (upper line corresponding to 200 bp) and p16 mRNA (lower line corresponding to 179 bp) for case Nos 1, 10, and 11. (E) Immunostaining of p16INK4a protein in liver cell adenoma (LCA). Case No 1 shows methylated p16INK4a and complete loss of p16INK4a (LCA cells negative for p16 protein) (original magnification ×10). (F) Immunostaining of p14ARF protein in LCA. Case No 1 shows unmethylated p14ARF and strong immunoreactivity of the tumour cells for p14 protein (dark reaction product within the tumour cell nuclei). The surroundings fibrous capsule (arrows) is negative (original magnification ×5). Case No 11 shows a methylated p14ARF and complete protein loss within the tumour tissue (original magnification ×20).
and 2 have been described previously.46 Exon 1β was analysed through two overlapping PCR products generated with the primer pairs P14F1 (5′ TACGGGAAAGGGCTGCTG 3′) and P14R1 (5′ GCCCGGGATGTGAACCA 3′), which generated a 245 bp product, and the primer pair P14F2 (5′ GCCGGGATGTGAGGGTTT 3′) and P14R2 (5′ CAAGCGGTGTATCTCTCTC 3′), which generated a 257 bp product. The primers were labelled with \(^{32}P\)-ATP and each sample was subjected to PCR analysis (denaturing for 30 seconds, annealing for 45 seconds, extension for 30 seconds at 94°C, 55–60°C, and 72°C, respectively). The PCR products were electrophoresed, and the gels dried and autoradiographed. Variant SCCP bands were cut out from the gel and the DNA eluted. Variant bands and 3 µl of the eluted DNA were used as templates for unlabelled PCR. After purification of the PCR products, sequencing analysis was performed using the DNA Sequenase Kit (Amersham, Germany) and an automatic sequencing analyser (ABI 373; Applied Biosystems-Perkin-Elmer, Germany). All mutations found were confirmed by direct sequencing of the amplified tumour and corresponding non-tumorous DNA to identify germline mutations and polymorphisms.

Immunohistochemical analysis and assessment

Immunohistochemical analysis was performed as described previously.46 In all cases tumour and non-neoplastic liver tissue was examined.

The following antibodies were used: p16 (polyclonal; rabbit, dilution 1:500; Pharmingen, San Diego, California, USA), and p14 (polyclonal; rabbit, dilution 1:100; Zymed Laboratories, South San Francisco, California, USA).

Sections known to stain positively were included in each batch and negative controls were also performed by replacing the primary antibody with mouse or goat ascites fluid (Sigma-Aldrich Biochemicals, St Louis, Missouri, USA).

RESULTS

Analysis of INK4a-ARF deletions and mutations

Twenty five normal/tumour pairs were interpreted for allelic dosage analysis (table 1, fig 2). The allelic balance of the two genes was determined using the interferon γ gene as an internal control (fig 2). The two genes, \(p^{14\text{INK4a}}\) and \(p^{16\text{ARF}}\), were expressed in all cases examined; deletions were not observed. No exclusive loss of either \(p^{16\text{ARF}}\) or \(p^{14\text{INK4a}}\) was found in our tumours. Loss of heterozygosity analysis revealed an identical status of the microsatellite markers used in paired samples of LCA and corresponding liver tissue.

Mutations of exons 1 and 2 were analysed by SSCP-PCR followed by direct sequencing of the cases with normal intratumorous bands. In nine cases, abnormal bands were visible. However, we failed to detect specific mutations within both exons. In one case, a polymorphism was identified in normal liver but not within LCA tissue (c442G >A; A148T).

Methylation status of the \(p^{14\text{INK4a}}\) and \(p^{16\text{ARF}}\) genes

Promoter methylation of \(p^{14\text{INK4a}}\) was present in 3/25 cases (12%). In all patients, corresponding non-neoplastic liver tissue was also analysed; no \(p^{14\text{INK4a}}\) promoter methylation was observed in any case. Analysis of the methylation status of the adjacent \(p^{16\text{ARF}}\) gene revealed that 6/25 LCA (24%) examined showed aberrant methylation at the 5’CpG island. Despite microdissection, amplification of unmethylated templates was also detected to some degree, probably because of contaminated normal intratumorous tissue (fibroblasts, endothelial cells, inflammatory cells). In normal LCA surrounding liver tissue, methylation of \(p^{14\text{INK4a}}\) or \(p^{16\text{ARF}}\) was not observed.

All six LCA with methylated \(p^{16\text{ARF}}\) exhibited an unmethylated \(p^{14\text{INK4a}}\) promoter. A coincidence of both \(p^{14\text{INK4a}}\) and \(p^{16\text{ARF}}\) methylation was not found. Thus the methylation status of \(p^{14\text{INK4a}}\) and \(p^{16\text{ARF}}\) promoters does not seem to be directly related.

Real time PCR of those samples with a methylated \(p^{16\text{ARF}}\) gene showed a level of methylation of approximately 75%.

All six cases with aberrant methylation of the \(p^{16\text{ARF}}\) or \(p^{14\text{INK4a}}\) gene showed complete loss of immunoactivity (fig 1E, F) within the tumour tissue. In the 19 cases shown to lack \(p^{16\text{ARF}}\) promoter methylation, nuclear staining of \(p^{16\text{ARF}}\) protein was observed in nearly all LCA cells with a moderate to strong intensity of immunoactivity. In normal liver tissue, \(p^{16\text{ARF}}\) protein was detected in all cases (fig 1E, F). Three LCA with a methylated \(p^{14\text{INK4a}}\) promoter lacked specific \(p^{14\text{INK4a}}\) immunostaining (fig 1E, F).
downregulated p16 detected in 22/25 tumours (fig 1D). Among the tumours with p16, the remainder p16 chromosome 9p21 in LCA, the most important benign epithelial alterations in the INK4a-ARF (also termed CDKN2A) locus on respectively.

In early preneoplastic lesions in the lung, stomach, oesophagus, and pancreas,17–21 Ours is the first study to examine alterations in the INK4a-ARF (also termed CDKN2A) locus on chromosome 9p21 in LCA, the most important benign epithelial tumour of the liver. We examined the status of p14ARF and p16INK4A simultaneously to answer the question of whether alterations in these genes may function as cooperative or alternative mechanisms in the pathogenesis of these tumours.

Our study showed that the p14ARF promoter was inactivated in 12% of cases. In 24% of all LCA examined, promoter methylation of the neighbouring gene, p16INK4A, was observed. We failed to detect simultaneous methylation of both genes and conclude that p14ARF methylation is independent of p16INK4A. Thus the p14ARF promoter demonstrates selective epigenetic silencing independent of that of p16INK4A. The strong correlation between promoter methylation and transcriptional inactivation, as examined by multiplex RT-PCR, indicates that aberrant methylation is a major mechanism of inactivation of the INK4a-ARF locus in LCA.

In concordance with data reported for cell lines, we failed to detect specific mutations of the p14ARF or p16INK4A gene.22 p14ARF can also be lost by (homozygous) deletion but this loss also targets p16INK4A in the vast majority of cases.22 Only a few examples currently exist of specific p14ARF deletions that spare the remainder p16INK4A coding region: a melanoma cell line and a glioma xenograft.21

In human cells, transcriptional silencing usually involves methylation of CpG rich sequences (CpG islands) in the promoters of affected genes. Such silencing is clonal and thought to be physiologically irreversible in somatic cells. Neoplastic cells often display aberrant methylation of multiple genes, including genes that regulate critical processes such as cell cycle control, DNA repair, and angiogenesis.22 23 24 The cause(s) of aberrant promoter methylation in neoplastic cells remains to be elucidated. It has been proposed that age related methylation identifies and contributes to an acquired predisposition to neoplasia (for example, colon cancer) because it parallels an age related increased cancer incidence and has the potential to alter the physiology of aging cells and tissues.25 26 This hypothesis predicts that higher levels of age related methylation may be present in conditions of rapid cell turnover that mimic premature aging. In LCA, an increase in cellular proliferation is often histologically. The proliferative activity of the neoplastic hepatocytes is significantly higher than in adenoma surrounding non-neoplastic liver tissue.2 3 7 Therefore, we hypothesise that methylation and consecutive silencing of the p16INK4A and p14ARF promoter may cause induction of increased cell turnover via affecting the G1/S phase transition of the cell cycle. In contrast with Rashid et al who found aberrant methylation of p16INK4A in approximately 73% of tubulovillous colon adenoma,27 a clear precancerous lesion, we detected aberrant methylation only in 24% of LCA. Together with the observation that altered methylation is also observed in liver cirrhosis,28 our data favour the hypothesis that methylation is a phenomenon of increased cellular proliferation and immortalisation rather than a conditio-sine-qua-non of malignant transformation.

Table 1 Pathohistological data and INK4a-ARF alterations

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex (M/F)</th>
<th>Tumour size diameter (cm)</th>
<th>p14 alterations</th>
<th>p16 alterations</th>
<th>Allelic status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RE-PCR</td>
<td>MSP</td>
<td>EXP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>2.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>4.9</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>10.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>5.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>6.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>3.0</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>12.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>7.6</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>8.0</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>8.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>10.8</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>4.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>14.0</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>10.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>9.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>8.2</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>7.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>9.6</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>8.3</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>7.8</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>3.9</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>9.0</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>23</td>
<td>F</td>
<td>6.5</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>10.2</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>7.8</td>
<td></td>
<td></td>
<td>+++</td>
</tr>
</tbody>
</table>

RE-PCR, restriction enzyme related-polymerase chain reaction; MSP, methylation specific PCR; EXP, gene mRNA expression analysed by reverse transcription PCR; ND, not detected (wild-type, both alleles expressed as defined by multiplex PCR); NI, not informative.
REFERENCES

