INFLAMMATION AND INFLAMMATORY BOWEL DISEASE

Mucin gene expression in the ileoanal reservoir is altered and may be relevant to the risk of inflammation and dysplasia

P A Sylvester, M Walsh, N Myerscough, B F Warren, A P Corfield, M G Thomas, P Durdey

Background: Adaptive colonic phenotypic change of the ileal mucosa is a feature of the ileoanal reservoir (IAR) with time, as described by mucin glycoprotein and histological analysis. Mucin gene expression is altered in colorectal neoplasia and inflammatory bowel disease but little is known of its expression in the IAR.

Aims: To examine the changes in mucin gene expression contributing to mucosal protection of the IAR against a background of known changes occurring in inflammatory disease and colorectal neoplasia.

Patients: Paraffin embedded specimens from 29 “W” and 11 “J” ileoanal reservoirs were studied. Colonic and ileal control tissue was obtained from normal resection margins.

Methods: Mucin mRNA was detected by in situ hybridisation using [35S]dATP labelled oligonucleotide probes. Mucin core protein was detected by immunohistochemistry.

Results: There was no change in mRNA expression of MUC1–4 in the IAR compared with ileal controls but there was a decrease in the protein product of MUC1 and MUC3. No mRNA transcripts of MUC5AC, 5B, or 6 were detected but protein product of MUC5AC and MUC6 was detected. Both cases of MUC6 positivity and 1/5 cases of MUC5AC positivity were confined to the ulcer associated cell lineage. No dysplasia was detected.

Conclusions: There is a change in the pattern of the membrane associated mucins MUC1 and MUC3, part of which is in keeping with changes described in colorectal neoplasia. A small number of cases demonstrated mucin gene changes (MUC5AC) which are seen in early neoplasia and this may provide a valuable monitor for such changes in IAR surveillance.

Restorative proctocolectomy is now regarded as a standard surgical procedure for patients who require proctocolectomy for ulcerative colitis (UC) and familial adenomatous polyposis (FAP). Adaptive colonic phenotypic change of the ileal mucosa is a feature of the pelvic ileoanal reservoir (IAR). Much of the evidence for phenotypic change has been provided by a change in morphology of the pouch mucosa from a villous small bowel type to a flatter colonic type and from an associated decrease in pouch mucosal permeability and increase in barrier function. These changes may also be monitored by studying the pattern of expression of mucins, which form an integral part of the supramucosal defensive barrier in the gastrointestinal tract. Immunohistochemical and biochemical studies of these glycoproteins in the IAR have shown a change from the sialylated, poorly sulphated, and O-acetylated small bowel mucin to a more sulphated and O-acetylated pattern characteristic of the large bowel mucosa as the phenotype changes. This modification towards a colonic phenotype occurs within the first 9–12 months after IAR construction but studies of older pouches indicate a predominantly ileal phenotype.

The risk of neoplasia with increased age of IARs remains a concern although there is little clear evidence that this risk is significant. Two long term studies of morphological changes in the IAR suggest that two groups can be identified. One group shows constant severe acute and chronic inflammation and the second in which there is constant atrophy with permanent subtotal or total villous atrophy. Low grade dysplasia has been reported in three patients from two smaller studies but there have been no reports of cancer developing within such an area of dysplasia. However, there have been reports of adenocarcinoma within the IAR of patients with FAP arising from the ileoanal anastomosis. The risk of carcinoma in the IAR of patients with UC is low and only three cases have been described, all of which are most likely attributable to retained diseased rectal mucosa. It is likely that the small columnar cuff just above the anal transition zone may be the area most at risk of dysplasia and inflammation.

Mucin changes have been described in association with colorectal neoplasia that involve both mucin gene expression and mucin glycosylation. IARs in situ for up to five years show no evidence of neoplastic change when analysed for mucin glycosylation and sulphation patterns but mucin gene expression has not been investigated. Mucin gene expression in colorectal neoplasia includes the de novo switch on of the gastric types MUC5AC and MUC6 against a background of colonic types (MUC2, MUC3, and MUC4), detected at the mRNA and peptide levels. Increased anti-variable number tandem repeat (VNTR) antibody reactivity to apomucin has also been detected for MUC2 and may be related to elevated levels of premature apomucin or abnormal processing.

The aim of this study was to evaluate changes in mucins contributing to mucosal protection of long term pouches and in particular the risk of neoplasia. Expression of mucin genes was examined against the background of known changes.
Mucin gene expression in normal human mucosae using an analogue score of 0–4

<table>
<thead>
<tr>
<th>Tissue</th>
<th>MUC 1</th>
<th>MUC 2</th>
<th>MUC 3</th>
<th>MUC 4</th>
<th>MUC 5B</th>
<th>MUC 5AC</th>
<th>MUC 6</th>
<th>MUC 7</th>
<th>TRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ileum</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jejunum</td>
<td>ND</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastric</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salivary gland</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>ND</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Bronchus</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Ethics approval
Ethics approval for all of the work undertaken was obtained from the United Bristol Hospital Trust Ethics Committee.

In situ hybridisation
Complementary 48mer oligonucleotide probes were chosen specifically for the tandem repeat sequences of MUC1, 2, 3, 4, 5AC, 5B, 6, TRK, and β-actin as described previously. The oligonucleotides were 3’ end labelled using a terminal deoxyribonucleotidyl transferase kit (Boehringer Mannheim, Lewes, East Sussex, UK) with 32P-deoxy-adenosine triphosphate (Amersham Life Science, Amersham, Bucks, UK) and were purified with a QIAquick nucleotide removal kit (Qiagen Ltd, Crawley, West Sussex, UK).

In situ hybridisation and signal detection were performed essentially as previously described. Autoradiographic detection of the hybridisations was carried out by dipping in K5 emulsion (Kodak, Ilford, UK) followed by air drying for one hour. Exposure was for 2–3 weeks in a desiccation chamber before development. Sections were counterstained with methyl green pyronin and mounted. Localisation of mucin mRNA was performed from the counterstained slides under light and dark field microscopy. The response of the autoradiographic film was calibrated using 14C radioactive microscale standards (Tocris Cookson, Langford, UK). Semi-quantitative assessment of mucin gene expression was made visually from the autoradiographs in relation to the 14C microscale standards as follows: +++, strong (1.74–3.0 nCi/mg); ++, moderate (0.83–1.6 nCi/mg); +, weak (0.19–0.7 nCi/mg); and −, negative (<0.19 nCi/mg). In addition, autoradiographic images of probe bound to mucin messenger RNA, together with 14C labelled standards, were measured using a computer assisted image analysis system (image 1.22 developed by W Rasband, NIH, Bethesda, Maryland, USA).

In situ hybridisation controls
The specificity of the oligonucleotide probes was verified and supported by the exclusively epithelial disposition of mucin hybridisation and the absence of expression in the colorectum of TRK (a neurotrophin receptor probe not expressed outside the CNS). The tissue specificity of the probes used in this study is illustrated in table 1. Competitive studies were performed using either 50 times excess of the same unlabelled probe or an irrelevant probe; in situ hybridisation was negative in normal rectal mucosa and adenomatous tissue with MUC7 acting as an internal negative. To ensure “low background”, in situ hybridisation was performed at an optimised temperature and with stringent hybridisation washing at a high temperature close to the calculated probe melting temperature. Mucin gene expression was largely consistent across the replicates and close to the calculated probe melting temperature. Mucin gene expression was consistently observed in areas of high or low expression.

Immunohistochemistry
Antibodies to mucin gene peptide sequences were used as described previously. The polyclonal antibodies LUM2–3 (MUC2, non-VNTR), LUM5–1 (MUC5AC, non-VNTR), and M5B (MUC5B, non-VNTR), kindly donated by Dr D Thornton and Dr J Sheehan, University of Manchester, UK, and GPEP24 (MUC6, VNTR, kindly donated by Professor I Carlstedt, University of Lund, Sweden) were used at dilutions occurring in inflammatory bowel disease and colorectal neoplasia.

Table 1 Mucin gene expression in normal human mucosae using an analogue score of 0–4

<table>
<thead>
<tr>
<th>Tissue</th>
<th>MUC 1</th>
<th>MUC 2</th>
<th>MUC 3</th>
<th>MUC 4</th>
<th>MUC 5B</th>
<th>MUC 5AC</th>
<th>MUC 6</th>
<th>MUC 7</th>
<th>TRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ileum</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jejunum</td>
<td>ND</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastric</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salivary gland</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>ND</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Bronchus</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tissue</th>
<th>C</th>
<th>G</th>
<th>GL</th>
<th>C</th>
<th>G</th>
<th>GL</th>
<th>C</th>
<th>G</th>
<th>GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ileum</td>
<td>–</td>
<td>–</td>
<td>+4/5</td>
<td>–</td>
<td>+4/5</td>
<td>–</td>
<td>+3/5</td>
<td>–</td>
<td>+2/5</td>
</tr>
<tr>
<td>Colon</td>
<td>–</td>
<td>–</td>
<td>+5/5</td>
<td>–</td>
<td>+5/5</td>
<td>–</td>
<td>+2/5</td>
<td>–</td>
<td>+5/5</td>
</tr>
<tr>
<td>IAR</td>
<td>–</td>
<td>–</td>
<td>+33/40</td>
<td>–</td>
<td>+28/40</td>
<td>–</td>
<td>+26/40</td>
<td>–</td>
<td>+12/40</td>
</tr>
</tbody>
</table>
of 1 in 3000, 1 in 800, 1 in 2500, and 1 in 1000, respectively. Monoclonal antibodies BC2 (MUC1, VNTR), 33 M4.275 (MUC4, VNTR), 34 and M3.3 (MUC3, VNTR) 35 were initially diluted in phosphate buffered saline (PBS) containing 10% non-immune goat serum: 1:2000 for BC2, 1:1000 for M4.275, and 1:100 for M3.3.

Sections were processed as described previously. 29 30 Endogenous peroxidase activity was blocked in 3% (v/v) hydrogen peroxide (MUC2, 5AC, 5B, and 6) or 1.0% H2O2/0.1% sodium azide (MUC1, 3, and 4). Antigen retrieval was performed by pressure cooking at 121°C for 85 seconds in 10 mM citrate buffer, pH 6.0, and tissue sections left to cool at room temperature for 20 minutes (MUC2, 5AC, 5B, and 6) or in citric acid buffer (pH 6) using a microwave set to high for eight minutes and repeated (MUC1, 3, and 4). MUC2 antiserum also required reduction in 10 mM dithiothreitol in 10 mM Tris/HCl, pH 8.0, at 37°C for 30 minutes.

Polyclonals to MUC2, MUC5AC, MUC5B, and MUC6 were incubated for one hour at room temperature. 30 After washing in PBS they were incubated with secondary reagent, 1 in 100 goat antirabbit horseradish peroxidase conjugate in PBS for 25 minutes before visualisation with 3-3′ diaminobenzidine.

Mouse monoclonal antibodies were incubated at room temperature for 45 minutes (BC2) and overnight (M3.3 and M4.275). Following incubation, sections were washed thoroughly in three changes of PBS for five minutes each, the first wash containing 1% v/v Triton X-100. Sections were incubated with biotinylated goat antimouse immunoglobulins for 15 minutes (BC2) and 30 minutes (M3.3 and 4.275) and then with streptavidin-biotin-horseradish peroxidase conjugate for 15 minutes.

Visualisation of polyclonal and monoclonal antibodies was by development in 0.6 mg/ml 3-3′ diaminobenzidine/0.03% (v/v) hydrogen peroxide in PBS, water washing, counterstaining with haematoxylin, dehydration, clearing, and mounting as previously described. 29 30

Positive and negative controls

Staining of the control tissues named above confirmed the expected pattern of positivity for the antisera tested (table 1). As a further control, competition studies using purified human colonic and respiratory mucins were performed. Mucins were purified from resected colorectal mucosa or human respiratory tract lavage samples using triple density gradient centrifugation in CsCl. 36 These showed the ability to abolish the LUM2–3 (MUC2) colonic epithelial staining with 10% purified colonic mucin (that is, MUC2) but not with purified 10% respiratory mucin (MUC5AC and MUC5B). Moreover, attenuation of MUC2 and MUC5AC staining was in a dose dependent manner. Specific reactivity of LUM5–1 in bronchial epithelial tissue was abolished with 10% respiratory mucin (that is, MUC5AC and MUC5B) but not with purified colonic mucin. The use of 10% bovine serum albumin did not abolish LUM2–3 or LUM5–1 staining. Positive controls for BC2, M3.3, and M4.275 were normal colon; negative controls were stained as above but with PBS alone substituted for the primary antibody.

All sections were viewed by PAS/MDW (MUC1, 3, and 4) and PAS/BFW (MUC2, 5AC, 5B, and 6) using a conference microscope and a note made of the proportion of positive cells and cellular localisation. The proportion of cells staining was estimated in quartile groupings: 1 (0–25%); 2 (25–50%); 3 (50–75%); and 4 (75–100%).

Statistical analysis

Analysis was performed with the Unistat Software using the Mann-Whitney U test for non-parametric data.

RESULTS

In situ hybridisation

Autoradiographic scores (0–4) for biopsies of the IAR are shown in table 2. The level of MUC2 and MUC4 mRNA was higher in colorectal controls when directly compared with ileal controls (p<0.03); there was no difference in levels of MUC1 and MUC3 (table 2). There was no change in the level of mRNA transcripts detected for MUC1–4 in the IAR compared with ileal controls (fig 1). No MUC5AC, 5B, or 6 transcripts were detected in either the test or control tissue.

![Figure 1](https://www.gutjnl.com/388/488/Sylvester, Walsh, Myerscough, et al.

Table 3

Scores for immunohistochemical staining of mucin (MUC) gene product in the ileoanal reservoir (IAR)

<table>
<thead>
<tr>
<th></th>
<th>MUC1</th>
<th></th>
<th>MUC2</th>
<th></th>
<th>MUC3</th>
<th></th>
<th>MUC4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>G</td>
<td>GL</td>
<td>C</td>
<td>G</td>
<td>GL</td>
<td>C</td>
</tr>
</tbody>
</table>

C, cytoplasm; G, Goblet cell; GL, glycocalyx.
Immunohistochemistry

Immunohistochemical scores for mucin detection in the IAR are shown in table 3. Detection of MUC1 protein product was greatest in the deep glands, with predominantly apical staining of epithelial cells. MUC3 and MUC4 were largely detected in cytoplasm, with MUC3 being detected mainly at the top of the crypt. MUC4 staining was strongest in the deep glands. The protein product of MUC2 was predominantly detected in the goblet cell, with staining most marked in goblet cell vesicles. MUC5AC was not detected in large or small bowel control tissues.

There was a smaller percentage of cells that stained for MUC1, 3, and 4 protein product in ileal controls compared with colorectal controls (p<0.003) (table 3). There was no difference for MUC2 and there was no positivity in control tissues for MUC5AC, 5B, or 6. There was a decrease in the level of MUC1 (p<0.004) and MUC3 (p<0.001) protein product in the IAR compared with ileal controls (fig 2). There was no correlation between inflammatory score and detection of the protein products of MUC1–4. There was no association between the degree of morphological change (villous, partial villous, and flat) and level of expression of MUC1, 2, and 4. Level of expression of MUC3 was less in those biopsies which retained their villous morphology (n=25) compared with those which had undergone partial villous atrophy (n=12): 0.72 (0.09) versus 1.00 (0) (p<0.05). Only three biopsies had flat mucosa such that statistical comparison was not possible. There was sporadic MUC5AC and MUC6 protein product detected in five and two reservoirs, respectively. Positivity for MUC6 was present in ulcer associated cell lineage (UACL) in both cases (fig 3) whereas only one of the MUC5AC positive pouch biopsies was present in UACL. Two of the five biopsies positive for MUC5AC and one of two positive for MUC6 had flat mucosa. No dysplasia was found in any of the 40 reservoirs studied.

Figure 2 Detection of MUC1 and MUC3 protein product (×40) by immunohistochemical staining with BC2 (MUC1) and M3.3 (MUC3). (A) Normal colon (MUC1); (B) normal ileum (MUC1); (C) ileoanal reservoir (MUC1); (D) normal colon (MUC3); (E) normal ileum (MUC3); and (F) ileoanal reservoir (MUC3).

Figure 3 Detection of MUC6 protein product in ulcer associated cell lineage present in ileoanal reservoir mucosa (×40).
DISCUSSION
Changes in the morphology and mucin biology of the IAR mucosa with time after construction have been identified. In addition, there are indications that dysplasia may arise in a few cases and development of neoplasia with increasing IAR age remains a concern. A number of studies have demonstrated that analysis of the epithelial mucins at the histochemical, biochemical, and genetic levels have the potential to predict and monitor the progression of gastrointestinal disease and this is also reflected in previous work on the IAR.

Expression of mucin genes and their mature products is known to be altered in colorectal neoplasia. In UC, no change in MUC2 mRNA levels could be found and no association with MUC2 allele length was apparent. However, differences in immunoreactive MUC2 have been reported in active disease. No study has been carried out in the IAR to assess the MUC gene pattern with respect to pouch adaptation or development of dysplasia.

The findings presented here for IAR mucosa showed decreases in immunodetectable MUC1 and MUC3 levels while mRNA expression for these genes remained constant (tables 2, 3). This pattern is reminiscent of studies in UC where MUC2 mRNA levels were unchanged but immunoreactive MUC2 showed a significant increase or decrease depending on the antibody used. This has been explained in terms of changes in post translational modifications. A similar interpretation can be made for results obtained here with MUC1 and MUC3. Our findings imply that no alteration in mRNA levels are seen and that antibody analysis detects events that occur at the peptide through proteolytic cleavage, glycosylation, or subcellular targeting, which would be reflected in modified binding of the products with antimucin antibodies. Evidence for this type of behaviour using different anti-MUC2 antibodies to VNTR and non-VNTR peptide domains has been reported.

The anti-MUC1 and anti-MUC3 antibodies used in this study are directed against the VNTR peptide sequences of these genes and it is possible that glycosylation may affect the binding properties of antibodies. Glycosylation changes have been detected in IAR related to adaptation and which occur without significant identifiable morphological modification. In UC, such differences in glycosylation are also apparent between groups of patients with similar and typical inflammatory bowel disease related morphology. At present, no anti-MUC1 or anti-MUC3 antibodies are available that allow discrimination between glycosylation patterns in these membrane associated mucins.

Detection of differences in gene expression in MUC1 and MUC3 as adaptation occurred showed levels that were lower in biopsies with no or minimal change to the villous architecture. Retention of the Ileal phenotype argues against any changes in MUC1 and MUC3, reflecting a colonic phenotype, although initial steps in this adaptation may involve alteration of glycolalyx targeted mucins.

This study provides no support for the appearance of dysplasia or neoplastic change within the period of the pouches studied. In this respect, sporadic expression of MUC5AC and MUC6 may be relevant as both have been found to be altered in colorectal neoplasia.

xyz

REFERENCES
Mucin gene expression in inflammation and dysplasia

