Effect of Pentavac and measles-mumps-rubella (MMR) vaccination on the intestine

B Thjodleifsson, K Davidsdottir, U Agnarsson, G Sigthorsson, M Kjeld, I Bjarnason

Background: The safety of infant vaccination has been questioned in recent years. In particular it has been suggested that the measles, mumps, and rubella (MMR) vaccination leads to brain damage manifesting as autism consequent to the development of an “enterocolitis” in the immediate post-vaccination period.

Aim: To assess if MMR vaccination is associated with subclinical intestinal inflammation, which is central to the autistic “enterocolitis” theory.

Methods: We studied 109/58 infants, before and two and four weeks after immunisation with Pentavac and MMR vaccines, for the presence of intestinal inflammation (faecal calprotectin).

Results: Neither vaccination was associated with any significant increase in faecal calprotectin concentrations.

Conclusions: The failure of the MMR vaccination to cause an intestinal inflammatory response provides evidence against the proposed gut-brain interaction that is central to the autistic “enterocolitis” hypothesis.

Subjects and Methods

Iceland has a developed health service with a centralised vaccination programme that results in infant vaccination rates approaching 100%. Pentavac (Pasteur Mérieux, France) vaccination (against diphtheria, tetanus, pertussis, polio, Haemophilus influenza type b) is performed at three, five, and 12 months of age and MMR (Priorix; SmithKline Beecham) vaccination at 18 months. One hundred and nine infants attending two of the vaccination centres of Southwest Iceland participated. These were consecutive infants where the parents had been sent a pre-attendance information leaflet explaining the nature and aims of the research. All of those approached participated. No infant met the predetermined specific exclusion criteria to this study which included those specified by the makers of the vaccines, the presence of intestinal diseases, or ingestion of medications that are associated with intestinal permeability-inflammation.

The infants were studied by measuring faecal calprotectin (Faecal calprotectin concentrations (mg/l) before and after Pentavac and measles-mumps-rubella (MMR) vaccination

<table>
<thead>
<tr>
<th></th>
<th>Pentavac</th>
<th></th>
<th>MMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post 0 week</td>
<td>Post 2 weeks</td>
</tr>
<tr>
<td>n</td>
<td>109</td>
<td>101</td>
<td>89</td>
</tr>
<tr>
<td>Median</td>
<td>39</td>
<td>40</td>
<td>37</td>
</tr>
</tbody>
</table>

There were no significant differences between calprotectin levels at the different time points and sequential studies showed no significant changes following vaccination.

Abbreviations: MMR, measles-mumps-rubella.
intestinal pathology

the postulated consequential effect on brain function.

of the measles vaccination virus in the development of this

in infants undergoing immunisation. The upper limit of faecal

MMR vaccination leads to subclinical intestinal inflammation

Eishes NA, Hyman SL. Measles-mumps-rubella vaccine and autistic

spectrum disorder: report from the new challenges in childhood

immunizations conference convened in Oak Brook, Illinois, June 12–13,


Wood NC, Hamilton I, Axon ATR, et al. Abnormal intestinal

permeability. An aetiological factor in chronic psychiatric disorders? Br J


6 Wakefield AJ, Puleston JM, Montgomery SM, et al. The concept of

tenterocolitis in autistic children with

huspital lymphoid tissue and may cause intestinal

inflammation, which on occasional may resemble Crohn’s disease. 3 24 The measles virus has controversially 22 been implicated in the pathogenesis of Crohn’s disease 22 and other dis-

cases, including multiple sclerosis. 24 The suggestion that the live attenuated measles vaccine might lead to ileocolonic

inflammation in autistic features 24 has caused equal interest. This hypothesis was formulated in an attempt to explain the high prevalence of “enterocolitis” in autistic children with

gastrointestinal symptoms. 25 Consequent to the measles vac-

cine virus induced ileocolonic inflammation, it is suggested, there is increased intestinal permeation of a variety of intesti-
nally derived neuroactive peptides that interfere with brain

development. 22 24 In support of this hypothesis are reports of intestinal pathology 24 and abnormal intestinal function in children with autism 25 when examined a number of years after the vaccination. These data are not particularly controversial but rather highlight the possible role and effect of the measles vaccination virus in the development of this inflammation in the immediate post-vaccination period and the postulated consequential effect on brain function.

In this study we specifically assessed the possibility that MMR vaccination leads to subclinical intestinal inflammation in infants undergoing immunisation. The upper limit of faecal

concentrations of calprotectin (110 mg/l; 95% confidence limits (2 SD) calculated from logararithmically transformed mean data) before vaccinations at 12 and 18 months of age are comparable with published data in normal infants of the same age 26 28 and are twice as high as those reported in healthy adults. Pathological intestinal inflammation is easily differen-
tiated from normal as faecal calprotectin values are usually well in excess of 1000 mg/l 29 30 under these circumstances.

There was no evidence that either Pentavac or MMR vacci-
nation provoked subclinical intestinal inflammation in any of our apparently healthy children during the four period post-vaccination period. This lack of a detectable intestinal

inflammatory response suggests that the measles vaccine

virus itself is not enterotoxic in healthy infants which argues against the MMR induced autistic “enterocolitis” theory. This does not however rule out the possibility that vaccination might have an adverse effect on susceptible infants that are perhaps immune compromised or with an immunological makeup that predisposes them to autoimmune disease. 11

ACKNOWLEDGEMENT

The study was supported by the Science Fund of the University Hos-
pital Hringbraut Reykjavik and by Wyeth Lederle

assay differs somewhat from many of the published ones, 6 12

mainly in the extraction procedure and amount of stool

required for assay (200 mg rather than 5 g). The Calprotect

method gives calprotectin values that are approximately five

times higher than the older method, 5 with improved sensitivity 12 for the detection of intestinal inflammation in adults.

All parents provided written informed consent and the studies were approved by the National University Hospital

Ethics Committee.

RESULTS

Table 1 shows the median (range) values for faecal calprotec-
tin concentrations in infants. There were no statistically

significant differences in faecal calprotectin concentrations at any time points (p>0.25) (Friedman’s two way analyses of variance) or when assessed in subjects studied before and

after Pentavac (p>0.2) or MMR (p=0.3) vaccination (paired Student’s t test on logarithmically transformed data which were normally distributed).

DISCUSSION

Naturally occurring measles viral infection has a predilection for the intestinal lymphoid tissue and may cause intestinal

inflammation, which on occasions may resemble Crohn’s disease. 3 24 The measles virus has controversially 22 been implicated in the pathogenesis of Crohn’s disease 22 and other dis-
cases, including multiple sclerosis. 24 The suggestion that the live attenuated measles vaccine might lead to ileocolonic

inflammation in autistic features 24 has caused equal interest. This hypothesis was formulated in an attempt to explain the high prevalence of “enterocolitis” in autistic children with

gastrointestinal symptoms. 25 Consequent to the measles vac-

cine virus induced ileocolonic inflammation, it is suggested, there is increased intestinal permeation of a variety of intesti-
nally derived neuroactive peptides that interfere with brain

development. 22 24 In support of this hypothesis are reports of intestinal pathology 24 and abnormal intestinal function in children with autism 25 when examined a number of years after the vaccination. These data are not particularly controversial but rather highlight the possible role and effect of the measles vaccination virus in the development of this inflammation in the immediate post-vaccination period and the postulated consequential effect on brain function.

In this study we specifically assessed the possibility that MMR vaccination leads to subclinical intestinal inflammation in infants undergoing immunisation. The upper limit of faecal

concentrations of calprotectin (110 mg/l; 95% confidence limits (2 SD) calculated from logararithmically transformed mean data) before vaccinations at 12 and 18 months of age are comparable with published data in normal infants of the same age 26 28 and are twice as high as those reported in healthy adults. Pathological intestinal inflammation is easily differen-
tiated from normal as faecal calprotectin values are usually well in excess of 1000 mg/l 29 30 under these circumstances.

There was no evidence that either Pentavac or MMR vacci-
nation provoked subclinical intestinal inflammation in any of our apparently healthy children during the four period post-vaccination period. This lack of a detectable intestinal

inflammatory response suggests that the measles vaccine

virus itself is not enterotoxic in healthy infants which argues against the MMR induced autistic “enterocolitis” theory. This does not however rule out the possibility that vaccination might have an adverse effect on susceptible infants that are perhaps immune compromised or with an immunological makeup that predisposes them to autoimmune disease. 11

ACKNOWLEDGEMENT

The study was supported by the Science Fund of the University Hos-
pital Hringbraut Reykjavik and by Wyeth Lederle

REFERENCES


hyperplasia, non-specific colitis, and pervasive developmental disorder in


3 Halsey NA, Hyman SL. Measles-mumps-rubella vaccine and autistic

spectrum disorder: report from the new challenges in childhood

immunizations conference convened in Oak Brook, Illinois, June 12–13,


5 Wood NC, Hamilton I, Axon ATR, et al. Abnormal intestinal

permeability. An aetiological factor in chronic psychiatric disorders? Br J


6 Wakefield AJ, Puleston JM, Montgomery SM, et al. The concept of

tenterocolitis in autistic children with

huspital lymphoid tissue and may cause intestinal

inflammation, which on occasional may resemble Crohn’s disease. 3 24 The measles virus has controversially 22 been implicated in the pathogenesis of Crohn’s disease 22 and other dis-
cases, including multiple sclerosis. 24 The suggestion that the live attenuated measles vaccine might lead to ileocolonic

inflammation in autistic features 24 has caused equal interest. This hypothesis was formulated in an attempt to explain the high prevalence of “enterocolitis” in autistic children with

gastrointestinal symptoms. 25 Consequent to the measles vac-

cine virus induced ileocolonic inflammation, it is suggested, there is increased intestinal permeation of a variety of intesti-
nally derived neuroactive peptides that interfere with brain

development. 22 24 In support of this hypothesis are reports of intestinal pathology 24 and abnormal intestinal function in children with autism 25 when examined a number of years after the vaccination. These data are not particularly controversial but rather highlight the possible role and effect of the measles vaccination virus in the development of this inflammation in the immediate post-vaccination period and the postulated consequential effect on brain function.

In this study we specifically assessed the possibility that MMR vaccination leads to subclinical intestinal inflammation in infants undergoing immunisation. The upper limit of faecal

concentrations of calprotectin (110 mg/l; 95% confidence limits (2 SD) calculated from logararithmically transformed mean data) before vaccinations at 12 and 18 months of age are comparable with published data in normal infants of the same age 26 28 and are twice as high as those reported in healthy adults. Pathological intestinal inflammation is easily differen-
tiated from normal as faecal calprotectin values are usually well in excess of 1000 mg/l 29 30 under these circumstances.

There was no evidence that either Pentavac or MMR vacci-
nation provoked subclinical intestinal inflammation in any of our apparently healthy children during the four period post-vaccination period. This lack of a detectable intestinal

inflammatory response suggests that the measles vaccine

virus itself is not enterotoxic in healthy infants which argues against the MMR induced autistic “enterocolitis” theory. This does not however rule out the possibility that vaccination might have an adverse effect on susceptible infants that are perhaps immune compromised or with an immunological makeup that predisposes them to autoimmune disease. 11

ACKNOWLEDGEMENT

The study was supported by the Science Fund of the University Hos-
pital Hringbraut Reykjavik and by Wyeth Lederle

www.gutjnl.com

Guidelines for contributors: Submission and publication at www.gutjnl.com. If you have any questions about submission, acceptances, or publication, please contact the editorial office at gutjnl@gut.bmj.com. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. Copyright © 2002 BMJ Publishing Group. http://gut.bmj.com