If you have a burning desire to respond to a paper published in Gut, why not make use of our “rapid response” option?

Log onto our website (www.gutjnl.com), find the paper that interests you, and send your response via email by clicking on the “eLetters” option in the box at the top right hand corner.

The editors will decide as to whether to also publish it in a future paper issue.

Non-variceal upper gastrointestinal haemorrhage

I enjoyed reading the guidelines on non-variceal upper gastrointestinal haemorrhage (Gut 2002;51(suppl 4):VI–6) and would like to congratulate the British Society of Gastroenterology (BSG) on their production, and hope they will form the basis for continued improvements in the management of this condition. However, several areas of the guidelines require further comment and exploration before they can be accepted as a national “gold standard” by which the management of non-variceal haemorrhage should be judged.

The guidelines give a grade A recommendation for the use of endoscopic therapy to treat adherent clots. This is despite failure of individual randomised controlled trials of endoscopic versus no endoscopic therapy to demonstrate a benefit in this subgroup.1 The guidelines indicate the rationale for recommending endoscopic therapy is a meta-analysis of trials2; this is an incorrect interpretation of those results. The quoted meta-analysis showed that endoscopic therapy was of significant benefit in patients with active bleeding or a visible vessel but not with adherent clots. This is despite failure of this analysis to be effective in this subgroup of tightly adherent clots. Thus the approach to adherent clots is not as clear and unequivocal as implied in the BSG guidelines and further discussion of the recommendations on the use of washing and specific endoscopic therapies should be considered.

The guidelines also strongly endorse the use of high dose continuous intravenous proton pump inhibitor (PPI) therapy after endoscopic therapy. This opinion has clearly been swayed by the trial from Hong Kong by Lau and colleagues.3 While the design and outcomes of this exemplary work are not in question, it would be wise to consider the applicability to a UK population before widely endorsing the extra costs involved in the wholesale adoption of this therapy. The omeprazole treated group were younger than those treated in the UK for acute non-variceal bleeding and had significantly lower numbers of patients taking non-steroidal anti-inflammatory drugs (NSAIDs) (32.5% v 68%) and with important comorbidity (25% v 60%). In addition, there are pharmacokinetic and pharmacodynamic issues that suggest there might be a difference in responses between this trial group and a standard UK bleeding population. Asians and Orientals have a lower parietal cell mass than Europeans4 and PPI therapy would be expected to be more effective. Omeprazole is predominantly metabolised and inactivated by cytochrome P450 2C19 (CYP2C19). The activity of this enzyme is genetically determined and those with low activity variants (poor metabolisers) have a fivefold increased exposure to omeprazole and consequently increased acid inhibition compared with wild-type variants (extensive metabolisers). Poor metabolisers are uncommon in Northwestern European White populations (3%) but much more common in Orientals (up to 23%).5,6 Thus the impressive results may not directly translate to a major benefit in the UK.

Perhaps the most convincing argument for avoiding blanket use of high dose PPI was provided by Udd et al’s randomised controlled study of omeprazole 20 mg once daily compared with the endorsed high dose continuous regimen. Sample size was comparable with that of Lau et al and powered to detect equivalence. The study enrolled Europeans with apparently similar demographics to the UK bleeding population (mean age 74–79%). Rates of rebleeding, surgery, and mortality were equivalent in the two treatment groups.

The publication and dissemination of the BSG guidelines should enhance practice but it is important that all of the recommendations are not accepted and implemented uncritically and further discussion and refinement are encouraged.

L I P Beales
School of Health Policy and Practice, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK; i.beales@uea.ac.uk

References

www.gutjnl.com

Gut 2003;52:609–616

LETTERS

Gut: first published as 10.1136/gut.52.4.612 on 1 April 2002. Downloaded from http://gut.bmj.com/ on October 16, 2023 by guest. Protected by copyright.
To perform or not to perform liver biopsy: an alternative view

Roger Chapman (Gut 2002;51:9–10) commenting on the recent important study from Nottingham concluded that there is a strong case for liver biopsy in most asymptomatic patients with persistently abnormal liver tests, even when diagnostic serology is negative. This conclusion is reasonable, particularly if diagnostic accuracy is paramount. However, accuracy is not the only consideration and other equally valid conclusions can be made from different viewpoints.

Unfortunately, liver biopsy is often painful, requires bed rest for at least six hours, and is associated with a small but definite mortality. We need to appraise our patients of these factors and the likely benefits so that they can make an informed choice. Standard methods of evidence based medicine can greatly assist us in doing this.

As the predominant finding on biopsy is non-alcoholic fatty liver disease (NAFLD), the first question is: can any other test reliably predict fatty liver in this situation? There are three imaging techniques which can detect fatty liver—ultrasound, computerised tomography, and magnetic resonance imaging. Ultrasound is the most patient friendly, cheapest, safest, and most readily available. Furthermore, it is the only imaging technique for which we have sensitivities and specificities for fatty liver.

The most recent study gives a sensitivity of 89% and a specificity of 93%. Using the latest data, this can be shown to be 89% and 96% respectively. Many would consider this degree of certainty sufficient to diagnose fatty liver and not biopsy. If the scan is negative it can be shown that there is still a 38% probability of fatty liver and one would therefore be more likely to favour biopsy. However, the patient might well want to know what the biopsy might reveal. We can readily provide them with this information by recalculating the percentage of patients having the various liver conditions when the number expected to have a positive scan is subtracted.

Column 2 of table 1 shows the prevalence of the various liver conditions found in the Nottingham study. Column 3 shows the likely prevalence of the various conditions in those with a negative scan. This clearly informs the patient’s and our decision making. Initially, we can consider how important it is to detect these various conditions and how they might be managed.

However, to obtain the predictive value of a positive or negative test one needs to know not just sensitivity and specificity but the prevalence (the pretest probability) of the condition being tested for in the population being studied. The Nottingham study provides precisely that and we now know that in England the prevalence of fatty liver in “well” patients with abnormal liver tests and negative serology is 66%. The easiest way of obtaining the post test probability of a positive or negative ultrasound scan (the positive and negative predictive values, respectively) is to calculate the likelihood ratios and apply them to the nomogram devised by Fagan.

The likelihood ratio for a positive test (LR+) is sensitivity/100—specificity which is 0.12. From the nomogram it can be shown that a positive scan for fatty liver has a positive predictive value of 96%. Many would consider this degree of certainty sufficient to diagnose fatty liver and not biopsy. If the scan is negative it can be shown that there is still a 20% probability of fatty liver and one would therefore be more likely to favour biopsy. However, the patient might well want to know what the biopsy might reveal. We can readily provide them with this information by recalculating the percentage of patients having the various liver conditions when the number expected to have a positive scan is subtracted.

Column 2 of table 1 shows the prevalence of the various liver conditions found in the Nottingham study. Column 3 shows the likely prevalence of the various conditions in those with a negative scan. This clearly informs the patient’s and our decision making. Initially, we can consider how important it is to detect these various conditions and how they might be managed.

Penetration of haemochromatosis

Ryan and colleagues (Gut 2002;51:108–12) noted that the expected homozygote frequency of 1 in 83 for the HFE C282Y mutation is not reflected in the number of patients with haemochromatosis seen in a clinical setting. Accordingly, they have studied family members of patients with haemochromatosis as a surrogate for population screening. As they point out, there are probably genes other than HFE that affect the expression of hereditary haemochromatosis, and such genes are likely to be overrepresented in the families of index cases. Thus the choice of relatives would tend to overestimate the prevalence of clinical manifestations of haemochromatosis. Yet their studies confirm others published within the past year “that suggest that the clinical penetrance of the homozygous state is so low that it cannot be detected, even in very large samples. Interestingly, Ryan et al seemed not to reach this conclusion, rather attributing symptoms such as fatigue, arthropathy, and impotence to the disease. But these are very common symptoms, and not only do they

Table 1

<table>
<thead>
<tr>
<th>Various liver conditions</th>
<th>Prevalence (%) in Nottingham study</th>
<th>Projected prevalence (%) in those expected to have a negative scan for fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAFLD or NASH</td>
<td>66</td>
<td>19</td>
</tr>
<tr>
<td>Drug related damage</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Cryptogenic hepatitis</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>Alcoholic damage</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>AIH</td>
<td>1.9</td>
<td>4</td>
</tr>
<tr>
<td>Granuloma/sarcoid</td>
<td>1.7</td>
<td>4</td>
</tr>
<tr>
<td>PSC</td>
<td>1.4</td>
<td>3.3</td>
</tr>
<tr>
<td>PSC</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>Haemochromatosis</td>
<td>0.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Secondary biliary cirrhosis</td>
<td>0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Amyloid</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Glycogen storage disease</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; AIH, autoimmune hepatitis; PBC, primary biliary cirrhosis; PSC, primary sclerosing cholangitis.

References

need to be ascertained from the target population before they have been told of their diagnosis, but also they must be compared with the prevalence of the same symptoms in those who are not homozygous for the C282Y mutation. It is notable in this respect, for example, that while Ryan et al found that 42% of "the expressing female cohort" complained of fatigue, a NHANES III study found that 43.4% of 14,235 women complained of extreme fatigue; we found that 31.7% of women with wild-type HFE and 32.4% of women homozygous for the C282Y mutation complained of severe fatigue.1

It seems to me remarkable that the authors of this and a number of studies cited above are reluctant to draw the obvious conclusion: the clinical penetration of hereditary haemochromatosis is extremely low, so low that it has not been possible to detect it in very large population studies. For the past 20 years we have taught and have been taught that haemochromatosis is the most common disease of Northern Europeans. Until relatively recently I had this view. However, the interpretation of the data should not be moulded by preconceived ideas, and the controlled study of 41,000 haemochromatosis patients we concluded recently1 makes the fact abundantly clear: the HFE mutation is common, the biochemical phenotype is common, but haemochromatosis is, in fact, a rare clinical disease2.

E Beutler
Scirpi Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; beutler@scripps.edu

References

Patterns of expression of MMR proteins in serrated adenomas and other polyps of the colorectum

We read with a great interest the study by Sawyer et al (Gut 2002; 51:200-6). This well performed study of numerous genetic and immunohistochemical features of serrated adenomas (SAs) of the colorectum furnishes very important findings that may help to clarify the field of colorectal tumour origineis. Using both molecular and immunohistochemical techniques, Sawyer et al found in a series of 59 SAs a relatively low frequency of most abnormalities described in classical adenomas and adenocarcinomas of the colorectum. Comparative genomic hybridisation, performed on four cases, was always normal. These differences from classical adenomas may be due either to a distinct mechanism of tumorigenesis or to the presence of a large number of microsatellite alterations in SAs showing one of the above-mentioned patterns.1 FSA showing a dicyclic pattern exhibited elevated immortal (64%) or moderate (28%) dysplasia. An interesting result obtained by Sawyer et al is the absence of high level microsatellite instability (MSI-H) and the rarity of low level microsatellite instability (MSI-L) (two of 39 cases). Again, there is a debate in the literature concerning the frequency of MSI in SAs.2 3 Sawyer et al also studied the expression of two mismatch repair proteins (MMR), hMLH1 and hMSH2, and they found no loss of cellular expression of these two proteins in SAs. This result confirms the MSI analysis, as many studies have now demonstrated that only MSI-H tumours lose expression of MMR proteins while microsatellite stable and MSI-L tumours have normal expression.4

In their study, Sawyer et al did not describe precisely the pattern of expression of hMLH1 and hMSH2 proteins. We recently performed an immunohistochemical study of MMR proteins in a series of 30 colorectal SAs (19 low grade and 11 high grade), 10 hyperplastic polyps (HP), and 20 classical adenomas (10 high grade and 10 low grade) of the colorectum. Two SAs came from patients with hereditary non-polyposis colorectal cancer (HNPPC) syndrome, one from a patient with familial adenomatous polyposis, and one from a patient with juvenile polyposis. All classical adenomas were sporadic. Immunohistochemistry was performed on formalin fixed deparaffinized sections with the following antibodies: anti-hMLH1 (Pharmingen, clone G168-728, 1:70); anti-hMSH2 (Calbiochem, clone FE11, 1:100); and anti-hMSH6 (Transduction laboratories, clone 44, 1/100). Loss of expression of hMLH1 protein was only observed in one high grade SA, developed in a patient with HNPPC syndrome due to a mutation of the hMLH1 gene. In the second SA (of low grade) occurring in a patient with HNPPC syndrome due to mutation of the hMSH2 gene, there was no loss of expression in the SA, while the synchronous colon adenocarcinoma in the same patient showed loss of hMLH1 and hMSH6. All other SAs expressed the three MMR proteins. This expression was also present in all HP and classical adenomas. These results confirm that MSI is highly uncommon in all types of adenomas of the colon, both in SAs and in classical adenomas.5 Interestingly, we observed two distinct patterns of expression in the three types of polyps studied. One pattern was similar to that observed in the normal mucosa of the colon, with a moderate nuclear expression limited to the lower part of the crypts, and with a negative upper part of the crypts and surface epithelium. The other “dysplastic” pattern was characterised by strong nuclear expression of the surface epithelium and upper part of the lesion, with the lower part showing moderate positivity. This pattern was identical for the three antibodies. The normal pattern was always preserved in HP and low grade SAs, with a negative surface epithelium. In contrast, all classical adenomas, either low grade or high grade, showed strong surface staining. Among 11 high grade SAs, seven showed a “dysplastic” pattern (with strong surface staining, and four showed a normal pattern. These results suggest that SAs may be a heterogeneous group of tumours that in-
contributes to the formation of oesophageal and cardiac varices whereas the portocavernous venous system contributes to the formation of FV. Similarity of the FV. The drainage route in patients with FV was via a gastrorenal shunt.

According to Watanabe et al, in a series of patients who developed FV, superior mesenteric venous flow was diverted away from the liver and directed into the veins feeding the varices. Therefore, the portal venous pressure of patients with large FV is quite low but collateral flow into the FV is abundant. Additionally, such patients are likely to develop hepatic encephalopathy. We believe that some of the FV patients in group 1 treated by Tripathi et al had this pattern of portal haemodynamics. Gastric variceal bleeding is massive, and is frequently more severe than bleeding from oesophageal varices. As the course of patients with FV is adversely modified by variceal bleeding, identification of large high risk FV and their prophylactic obliteration has been proposed. However, high risk FV have not been fully defined. Kim et al determined the one year probability of bleeding in relation to all possible combinations of endoscopic variables (variceal size and the presence of red spots) for patients in Child’s class A, B, and C. According to their criteria, FV with a one year probability of bleeding >16% can be considered as high risk and are comparable with high risk oesophageal varices. How should we treat FV in patients with a low PPG?

Balloon-occluded retrograde transvenous obliteration (B-RTO) is a new interventional technique that was recently developed in Japan. B-RTO is similar to but less invasive than TIPS and achieves excellent prevention of recurrent bleeding with few major complications (fever, haemoglobinuria, and worsening of oesophageal varices), even in patients with poor liver function. Additionally, this procedure can improve hepatic encephalopathy. The main limitation of B-RTO in an emergency setting seems to be the requirement for temporary control of bleeding. We recommend elective B-RTO for the management of bleeding FV associated with a gastrorenal shunt at any PPG value. A prospective trial of TIPS versus B-RTO should be performed to determine the management of bleeding FV with a PPG ≤12 mm Hg.

A Matsumoto, H Yamauchi, H Inokuchi
Department of Gastroenterology, Tokeda General Hospital, Kyoto, Japan

Correspondence: Dr A Matsumoto, Department of Gastroenterology, Tokeda General Hospital, 28-1, Ishida Moriminami-cho, Fushimi, Kyoto, 601-1495, Japan; maru@hkg.odn.ne.jp

References

Endoscopic surveillance in Barrett’s oesophagus

I read with interest the debate on endoscopic surveillance in Barrett’s oesophagus (Gut 2002;51:313–14, 314–15). My reading of the literature supports Dr Playford’s view of Dr Playford—there is insufficient evidence to justify surveillance endoscopy in this condition. I am always interested in the uses and misuse of statistics to support a personal view, and to that end I have some questions that should be honestly answered by those advocating screening; firstly, where is the evidence, prospectively collected, that shows that Barrett’s oesophagus is a consequence of acid reflux disease? The quoted references do not support this argument. Secondly, I believe that it is deliberately opportunistic to liken Barrett’s oesophagus to a polyp in terms of malignant potential—abundant evidence supports the role of screening in the latter condition. Lastly, this issue of absolute risk should indeed be addressed. Colon cancer is common—at least 20 times more common than the oft quoted epidemic of oesophageal adenocarcinoma—which may not be associated with Barrett’s oesophagus.

We need to remember that despite an increase in the reported incidence of oesophageal adenocarcinoma in recent decades, limited endoscopic resources may be better devoted to reducing the disease burden in a condition where relative evidence supports surveillance.

Author’s reply
Dr Jeremy Ryan’s contribution to the debate is most welcome. He will not be surprised that I find his and Professor Playford’s arguments incorrect, but accept that they both pose insightful and valuable questions, which are correct.

Sufficient evidence

Firstly, without entering a philosophical dialectic, I must address his view of sufficient evidence. It is important to be mindful that “life is the art of drawing sufficient conclusions from insufficient premises” Samuel Butler. There are now further data to support the case for surveillance. A population based study of a cohort of patients with adenocarcinoma of the oesophagus and gastric cardia has concluded that surveillance detected Barrett’s oesophagus related cancers were associated with low stage disease and improved survival with no patient dying directly of cancer. A major problem of this study is that most patients were excluded because they did not have a diagnosis of Barrett’s oesophagus made six months prior to the diagnosis of cancer. The major challenge is finding Barrett’s oesophagus as it is an adaptive phenotype. It is becoming clear that many patients with Barrett’s oesophagus are asymptomatic, not complaining of reflux symptoms. The major challenge is finding Barrett’s oesophagus as it is an adaptive phenotype. It is becoming clear that many patients with Barrett’s oesophagus are asymptomatic, not complaining of reflux symptoms. The major challenge is finding Barrett’s oesophagus as it is an adaptive phenotype. It is becoming clear that many patients with Barrett’s oesophagus are asymptomatic, not complaining of reflux symptoms.

Misuse of data supporting a personal view

Dr Ryan is absolutely correct that I do have a strong personal view, hopefully displayed in the debate. In the opening argument I alluded, perhaps obscurely, to the postmodern Nietzschean philosophy of there being “no facts merely interpretations”. This is an approach I personally reject and in doing so, results correctly but perhaps harshly to a charge of lack of equipoise and misuse of data. I hope Dr Ryan accepts this explanation in mitigation. I am happy to inform him that there is a small amount of prospective evidence that reflux disease leads to Barrett’s oesophagus. McDougal and colleagues’ considered a careful natural history study of patients with reflux oesophagitis. To my mind the most striking feature was that 11% of patients with oesophagitis developed Barrett’s cancer. These clinical data support substantial pathophysiological and experimental data.

Barrett’s oesophagus and the colonic polyp

Again, I find that Dr Ryan is correct in part; stating that the burden of colon cancer is much greater than that of gastro-oesophageal cancer. My purpose in the debate was to highlight the potential benefits of screening. There are now further data to support the case for surveillance. A population based study of a cohort of patients with adenocarcinoma of the oesophagus and gastric cardia has concluded that surveillance detected Barrett’s oesophagus related cancers were associated with low stage disease and improved survival with no patient dying directly of cancer. A major problem of this study is that most patients were excluded because they did not have a diagnosis of Barrett’s oesophagus made six months prior to the diagnosis of cancer. The major challenge is finding Barrett’s oesophagus as it is an adaptive phenotype. It is becoming clear that many patients with Barrett’s oesophagus are asymptomatic, not complaining of reflux symptoms.

References
Mucosal tears on endoscopic insufflation

We read the paper by Cruz-Correa et al (Gut 2002;51:600) with great interest. They reported that similar haemorrhagic lacerations in the colon had not been described in any other gastrointestinal disease. We would like to present a patient with ulcerative colitis (UC) and diversion colitis showing an identical endoscopic finding.

A 32 year old Japanese man suffering from UC for 11 years was referred to our hospital in 1997 for treatment of intractable UC. His past medical history and family history were unremarkable. He had received more than 20 g of oral steroid at the time of referral. Furthermore, his condition was not relieved with medical treatment, and he underwent subtotal colectomy with ileostomy and mucous fistula formation in January 1998. At that time, it was planned to perform pouch operation a few months later. After the first operation, he was free from frequent bowel movements and the condition of the rectal remnant was under control with topical steroids. He was satisfied with the state of the ileostomy and did not want to undergo pouch operation in spite of our recommendation. Instead, he received surveillance colonoscopy to detect dysplasia of the rectal remnant annually after the operation. On surveillance colonoscopy in 2001, the rectal remnant was torn and the muscularis mucosa was exposed on endoscopic insufflation (fig 1), as in the reported case. Endoscopically, the remaining mucosa showed mild proctitis with a decrease in vascular pattern, mucous exudate, and oedema, but no ulcers. The post endoscopic course was uneventful without any treatment, partly because the rectal remnant was diverted from the faecal stream.

Diversion colitis occurs relatively frequently after stoma formation for a variety of disorders, including inflammatory bowel disease (IBD), malignancy, congenital disorders, and functional disorders. As both the clinical and endoscopic presentations are quite similar to those of IBD, it is very difficult to differentiate IBD from diverting colitis. However, Frisbie et al reported that colonoscopy revealed mucosal erythema or friability in 94% of patients who had undergone diverting colostomy for neurologically large bowel. Furthermore, we have never experienced the mucosa being torn by endoscopic insufflation in patients with ulcerative colitis. The authors in routine surveillance colonoscopy. Taken together, these results suggest that the mucosal tear might be attributable to diverting colitis in addition to UC in our case.

As annual surveillance colonoscopy is mandatory for longstanding UC, it should be noted that the defunctioned colorectum must be surveyed with great care in such cases. We read the paper by Cruz-Correa et al (Gut 2002;51:600) with great interest. They reported that similar haemorrhagic lacerations in the colon had not been described in any other gastrointestinal disease. We would like to present a patient with ulcerative colitis (UC) and diversion colitis showing an identical endoscopic finding.

A 32 year old Japanese man suffering from UC for 11 years was referred to our hospital in 1997 for treatment of intractable UC. His past medical history and family history were unremarkable. He had received more than 20 g of oral steroid at the time of referral. Furthermore, his condition was not relieved with medical treatment, and he underwent subtotal colectomy with ileostomy and mucous fistula formation in January 1998. At that time, it was planned to perform pouch operation a few months later. After the first operation, he was free from frequent bowel movements and the condition of the rectal remnant was under control with topical steroids. He was satisfied with the state of the ileostomy and did not want to undergo pouch operation in spite of our recommendation. Instead, he received surveillance colonoscopy to detect dysplasia of the rectal remnant annually after the operation. On surveillance colonoscopy in 2001, the rectal remnant was torn and the muscularis mucosa was exposed on endoscopic insufflation (fig 1), as in the reported case. Endoscopically, the remaining mucosa showed mild proctitis with a decrease in vascular pattern, mucous exudate, and oedema, but no ulcers. The post endoscopic course was uneventful without any treatment, partly because the rectal remnant was diverted from the faecal stream.

Diversion colitis occurs relatively frequently after stoma formation for a variety of disorders, including inflammatory bowel disease (IBD), malignancy, congenital disorders, and functional disorders. As both the clinical and endoscopic presentations are quite similar to those of IBD, it is very difficult to differentiate IBD from diverting colitis. However, Frisbie et al reported that colonoscopy revealed mucosal erythema or friability in 94% of patients who had undergone diverting colostomy for neurologically large bowel. Furthermore, we have never experienced the mucosa being torn by endoscopic insufflation in patients with ulcerative colitis. The authors in routine surveillance colonoscopy. Taken together, these results suggest that the mucosal tear might be attributable to diverting colitis in addition to UC in our case.

As annual surveillance colonoscopy is mandatory for longstanding UC, it should be noted that the defunctioned colorectum must be surveyed with great care in such cases. Your report might elicit further reports from other cases, which may contribute towards elucidating the pathophysiological process underlying these endoscopic findings. M Cruz-Correa Department of Medicine, Johns Hopkins University School of Medicine, Meyerhoff Digestive Disease Center, Baltimore, Maryland 21287, USA; macruzco@jhsp.edu

Finding mucosal tears in collagenous colitis during colonoscopic insufflation

Recently, I had the opportunity to review the interesting retrospective descriptive study of Cruz-Correa et al (Gut 2002;51:600). In brief, the authors described three patients who underwent colonoscopic examination for evaluation of chronic diarrhoea. During the colonoscopic examination, prominent mucosal tears in the ascending and transverse colon regions were noted. Biopsies of macroscopically normal appearing mucosa revealed changes supportive of underlying collagenous colitis. The authors attributed the mucosal tears, and their distribution, to the collagenous colitic process. I have wondered about another possibility. Although the examinations were performed by experienced endoscopists, could these lesions have been induced by barotrauma? Along these lines, were the lacerations seen as the colonoscope was actually in the ascending colon and insufflation was performed, or were they found “unexpectedly” as the proximal colon was intubated, as has been reported in barotrauma induced colon lacerations? Barotrauma induced colon injury can obviously occur when even an experienced endoscopist has performed the colonoscopic examination. Furthermore, the authors suggest that the distribution of the lacerations correlated with the distribution where one usually documents the “thickest” collagen tables—in the proximal colon. Could the distribution of these lacerations be related not to the thickness of the subepithelial collagen table but to the diameter of the colon where the lacerations were noted, being found where the colon is usually of greatest diameter? The diameter of the colon is usually greatest in the caecal and ascending colon regions. According to Laplace’s law, the tension on the wall of a cylindrical vessel is proportional to its radius. It is therefore most likely that barotrauma induced lacerations would be found in the proximal colon, regardless of where the “thickest” subepithelial collagen deposition might be found.

In summary, I would be interested in the authors’ opinions regarding the hypothesis that the findings they described might be related to barotrauma, as opposed to the underlying collagenous colitic process. The authors are correct that similar lesions have not been reported in other gastrointestinal diseases but have been described in patients undergoing colonoscopy and, at the least, they are certainly not specific for the presence of underlying collagenous colitis.

Reference


Figure 1 Endoscopic insufflation of the rectal remnant resulted in a mucosal tear in a patient with ulcerative colitis undergoing subtotal colectomy, ileostomy, and mucous fistula formation. The hole seen in the centre was a mucous fistula.
Unsuccessful rescue therapy with adefovir dipivoxil for lamivudine resistant HBV in a patient with liver failure

A 55 year old woman was diagnosed with decompensated cirrhosis due to HBV infection in December 1996. Serum HBV DNA level, as assessed by molecular hybridisation (Murex), was 1695 pg/ml and hepatitis B e antigen (HBeAg) was positive. Lamivudine 100 mg daily was started and resulted in rapid clinical and biological improvement and undetectable HBV DNA by polymerase chain reaction (PCR) on 10 November 1997, positive threshold 1000 copies/ml in April 1997. HBV replication remained undetectable by PCR during follow up for almost four years. By 21 February 2001, PCR HBV became positive (48 000 copies/ml) while alanine aminotransferase (ALT) levels remained normal until four months later when they increased to five times the upper limit of normal (ULN). One month later, jaundice, ascites, and encephalopathy developed, prompting hospitalisation on 14 July. HBeAg remained positive. The patient never discontinued lamivudine or consumed alcohol. There was no evidence of sepsis, gastrointestinal haemorrhage, renal failure, or hepatocellular carcinoma. ALT was 20 ULN, bilirubin 337 µmol/L, and prothrombin time 19 seconds above normal. Viral load was high (>40 000 000 copies/ml) and HBV polymerase gene sequencing demonstrated substitution of Met to Val at position 550 in the YMDD motif (M550V). Adefovir 10 mg daily was added to lamivudine on 18 July. Ten days later, serum HBV DNA decreased to 4 062 000 copies/ml but encephalopathy and liver failure worsened. The patient died on 5 August.

Discussion

Data from pivotal clinical trials of lamivudine have shown frequent emergence of YMDD variants with long term treatment (67% after four years)1 but without a major clinical impact on the course of HBV infection. Indeed, the increase in ALT level remains below pretreatment values while anti-HBe seroconversion and histological improvement can still be achieved.1 However, most of these patients have milder liver damage. In cirrhotic patients, isolated reports of severe2 or fatal3 breakthrough related to YMDD variants have been reported. Adefovir is effective and now available for the treatment of lamivudine resistant HBV, but the timing of its initiation is still unknown. In this case, although adefovir induced a potent and rapid suppression of HBV replication, death from liver failure could not be avoided. HBV replication usually precedes the occurrence of symptomatic hepatitis by several months, which in cirrhotic patients can precipitate serious liver injury. Therefore, we suggest that adefovir should be promptly introduced in cirrhotic patients after significant viral relapse is documented (that is, increase of sensitive HBV DNA above 100 000 copies/ml) without waiting for changes in transaminases. This could avoid death from cirrhosis decomposition.

References


Diseases of the Liver and Biliary System

The book by Professor Dame Sheila Sherlock and James Dooley may be considered one of the great classics among texts dedicated to clinical training, and has undoubtedly had extraordinary success. Eleven editions have now been published in English, and it has been translated into many other tongues, including Spanish, French, German, Japanese, and Italian. This book must surely be counted in any list of the most widely read medical books in the last 50 years.

With this new edition, hepatologists, gastroenterologists, and general physicians may again learn from Sheila. This edition was finished only a few days before her peaceful death. As in the previous edition, another well-known hepatologist at the Royal Free, James Dooley, has collaborated on this book.

As always, this book is excellent and, as in the past, will aid in the formation of young hepatologists and gastroenterologists. The present edition is a faithful representation of Sheila's personality. Her essence may be found on each page as may her capacity of synthesis and the clinical sense of our "master".

Throughout the book, Sheila that we know can clearly be seen and felt, particularly for Europeans. This book should be read not only by hepatologists and gastroenterologists of a certain age but also by the younger generations of physicians.

The personality of Sheila Sherlock cannot be repeated. She was tenacious, brilliant, intelligent, as well as incisive and, on occasions, tough on insincere and irresponsible notions. We all remember her questions and comments during the European Association for the Study of the Liver meetings. I can assure you that this book is of great use for physicians in training and that it truly reflects Dame Sheila's notable talent as a clinical teacher of hepatology. Therefore, if hepatologists and gastroenterologists wish to be up to date or learn modern clinical hepatology, they should read and study this book.

J Rodes

ABC of the Upper Gastrointestinal Tract

Our comprehension of upper gastrointestinal disease has been extended in the past three decades by the introduction of endoscopy, ultrasonography, computed tomography scanning, pH monitoring, and manometry. This burgeoning of investigational modalities coincided with the development of acid suppressing drugs, which for the first time enabled the control of peptic ulcer and gastrointestinal reflux disease. However, by the 1990s, long term acid suppression for the majority of patients with peptic ulcer was rendered obsolete by the discovery that Helicobacter pylori eradication resulted in permanent cure. This strategy has been so successful that non-steroidal anti-inflammatory drugs are now the commonest cause of ulcer disease in the developed world.

Despite the decline in ulcer disease there has been no reduction in dyspeptic patients presenting to general practitioners, and the flow of referrals to endoscopy and gastroenterology clinics is undiminished. Patients with functional dyspepsia now greatly outnumber those with peptic ulcer and although the aetopathogenesis is being unravelled, its management remains problematic. The Hippocratic maxim "I am more interested in the man who has the disease than the disease the man has" always needs to be borne in mind when managing such patients.

Non-gastroenterologists must have struggled to keep abreast of these advances and evolving concepts. I presume therefore a wide range of non-specialists, including general practitioners, family practitioners, house officers, and nurses, will welcome this compilation of articles, which first appeared in the British Medical Journal under its ABC series banner, as a means of regaining lost ground. The specialist readers of this journal will find the excellent coloured figures and photographs invaluable for illustrating lectures and seminars. If, like your reviewer, you failed to retain the original articles or have lost them in your "filing system", this is a second chance to obtain a valuable resource in a highly convenient format.

The authority of the texts is not questioned, written as they are by acknowledged experts, but the absence of references and in many cases even the omission of suggestions for further reading are deficiencies, which in the era of evidenced based practice, need to be addressed when planning subsequent series.

M Lancaster-Smith

Mechanisms and Consequences of Proton Transport

For someone who attended one of the early proton transport meetings and who lived through the era of the discovery of histamine H receptor antagonists and proton pump inhibitors, this volume makes fascinating reading. The elegant application of modern biochemical and molecular biology techniques has increased our knowledge of the intimate working of the proton pump in a remarkable manner. The book, written by key players in the field, describes, to use a hackneyed phrase, the cutting edge research that is being undertaken. The contributions to proton transport but address the K- and Cl- channels in the parietal cell and the role of Ca2+ in the secretory process. In the latter context, it is interesting that our knowledge of the structure of the gastric H/K ATPase has depended heavily on studies of the crystal structure of the calcium pump of the sarcoplasmatic reticulum. Now, to the reviewer at least, is the existence of functional gastric H/K ATPase related protein which appears to play an important role in the regulated movement of body fluid via Cl transport in a range of tissues, including the gastric mucus, salivary gland, and kidney. As an old acid inhibitory man, I viewed, at least initially, a role for Helicobacter pylori in the aetiology of peptic ulcer with some scepticism. However, I found the current chapters on this bacterium absorbing, particularly in the cunning ways it combats the low intragastric pH by, for example, downregulation of H/K ATPase gene expression. Similarly, the fact that the H/K ATPase is the dominant gastric autoantigen in H pylori infection has important implications for our understanding of autoimmune gastritis and possibly gastric cancer.

In their preface, the editors state that the field is still filled with a multitude of potential targets for drug development but it is not exactly clear what they have in mind. The chapter on inhibition of acid secretion using a carbonic anhydrase inhibitor applied locally is scientifically interesting but do we really need another anti-secretory drug to add to the already highly effective armamentarium of H2 receptor antagonists and proton pump inhibitors? The same argument applies to potential inhibitors of the potassium channel. Are there pathological states associated with the non-gastric H/K ATPase found in the kidney and colon? Probably not, as they play an important role in the normal maintenance of body K+ homeostasis.

In summary, this book based on presentations at a conference, some of the chapters are short and drop the reader almost immediately into the detailed science without much background introduction. The first chapter is excellent, setting the scene for the research based chapters that follow, although a little more discussion on the proton pump inhibitors both of the covalent class and K+ competitive-type would have been useful.

In these days of “all singing, all dancing” computer enhanced images, the cover of this book is disappointing and far from eye catching. The book is obviously required reading for those actively involved in the field of proton transport. Whether it will appeal to a broader audience is less clear.

M Parsons

NOTICES

38th EASL Annual Meeting
The European Association for the Study of the Liver will be holding its 38th annual meeting on 29 March–1 April 2003 in Istanbul, Turkey. Further information can be found on the website www.easl.ch/easl2003.

Falk Workshop—Inflammatory Bowel Disease: Turning New Advances into Practice
This will be held on 3 April 2003 in Berne, Switzerland. Further details: Falk Foundation e.V., Congress Division, PO Box 6529, Leinen- weberstr. 5, 79041 Freiburg/B, Germany. Tel: +49 761 15 140; fax: +49 761 15 14 359; email: symposia@falkfoundation.de; website: www.falkfoundation.de
International Symposium on Viral Hepatitis and Liver Disease
This conference will take place on 6–10 April 2003 in Sydney, Australia. Further information: ISVHLD 2003 Congress Managers, GPO Box 128, Sydney NSW 2001, Australia. Tel: +612 9262 2277; fax: +612 9262 3135; email: isvhld@tourhosts.com.au; website: www.tourhosts.com.au/isvhld

New In Vivo Imaging Modalities for Molecular Biology, Cell Biology and Physiology
This Jacques Monod conference will be held on 31 May–4 June 2003 in Roscoff, France. Further information: Bertrand Tavitian, INSERM M10103, Service Hospitalier Frédéric Joliot, CEA Direction des Sciences du Vivant, Direction de la Recherche Médicale, 4 place du Général Leclerc, 91401 Orsay Cedex, France. Tel: +33 169 867 779; fax: +33 169 867 739; email: tavitian@shfj.cea.fr

Prague Hepatology Meeting
To be held on 5–7 June 2003 in Prague, Czech Republic. Leading speakers from Europe and the USA will present new ideas and suggestions on pathophysiology, diagnostics, and therapy of liver diseases in ten programmes blocks. Further details: Ms Veronica Revicka. Tel: +420 241 445 759; fax: +420 241 445 806; email: veronika@congressprague.cz

Falk Symposia—New Findings on Pathogenesis and Progress in Management of IBD
Two symposia and a workshop will be held on 10–14 June 2003 in Berlin, Germany. Further details - see Falk Workshop details above.

Gastroenterology and Endotherapy: XXIst European Workshop
This will be held on 16–18 June 2003 in Brussels, Belgium. Further details: Nancy Beaufrez, Administrative Secretariat of the Workshop, Gastroenterology Department, Erasme Hospital, Route de Lennik 808, B-1070 Brussels, Belgium. Tel: +32 (0)2 555 49 00; fax: +32 (0)2 555 49 01; email: beaufrez@ulb.ac.be

The Association of Coloproctology of Great Britain & Ireland
This annual meeting will be held on 7–10 July 2003 in Edinburgh, UK. Further details: Conference Secretariat, The ACGBI at the Royal College of Surgeons of England, 35–43 Lincoln’s Inn Fields, London WC2A 3PE. Tel: +44 (0)20 7973 0307; fax: +44 (0)20 7430 9235; email: acpgbi@asgbi.org.uk; website: www.acpgbi.org.uk

European Helicobacter Study Group (EHSG)
This meeting, on Helicobacter infections and gastroduodenal pathology, will be held on 3–6 September 2003 in Stockholm, Sweden. Further details: Professor Torkel Wadstrom, President- EHSG, Lund University, Department of Infectious Diseases & Medical Microbiology, Division of Bacteriology, Solvegatan 23, SE-223 62 Lund, Sweden. Tel: +46 46 173 241; fax: +46 46 152 564; email: Torkel.Wadstrom@mmb.lu.se; website: www.helicobacter.org

The European Society of Parenteral and Enteral Nutrition (ESPEN)
ESPEN will celebrate its silver anniversary at the time of the annual congress, which is to be held on 20–23 September 2003 in Cannes, France. Further details: www.espen.org