Monocyte chemoattractant protein 1 (MCP-1) released from *Helicobacter pylori* stimulated gastric epithelial cells induces cyclooxygenase 2 expression and activation in T cells

Background and aims: To clarify the interaction between gastric epithelial and mucosal T cells, we examined the role of cytokines released from epithelial cells in response to *Helicobacter pylori* water extract protein (HPWEP) in regulating T cell cyclooxygenase 2 (COX-2) expression and activation.

Methods: Media from MKN-28 cells incubated with HPWEP for 48 hours were added to Jurkat T cells and human peripheral T cells. C-C and CXC chemokine concentrations in MKN-28 cell media, and COX-2 expression, interferon γ (IFN-γ), and interleukin (IL)–4 secretions in T cells were determined by western blot analysis and ELISA methods. Distributions of COX-2 positive T cells and monocyte chemoattractant protein 1 (MCP-1) in tissue specimens with *H pylori* associated gastritis were measured as single or double labelling by immunohistochemistry.

Results: MCP-1, IL-7, IL-8, and RANTES were detected in media from MKN-28 cells incubated with HPWEP. Media as a whole, and MCP-1 alone, stimulated COX-2 expression and peripheral T cell proliferation. Anti-MCP-1 antibody inhibited media stimulated COX-2 mRNA expression in Jurkat T cells. Media stimulated IFN-γ but not IL-4 secretion from peripheral T cells, while MCP-1 stimulated IL-4 but not IFN-γ secretion. Both stimulated cytokine release, and peripheral T cell proliferation was partially inhibited by NS-398, a specific COX-2 inhibitor. In mucosa with gastritis, COX-2 was expressed in T cells and MCP-1 was localised mainly in epithelial and mononuclear cells. MCP-1 levels and the intensity of COX-2 expression in tissue samples were closely related.

Conclusions: Cytokines such as MCP-1, released from gastric epithelial cells in response to HPWEP, seem to modulate T cell immune responses, at least in part via COX-2 expression.
95% of cells isolated by this method were peripheral T cells, body. Immunostaining with anti-CD3 antibody showed that 31–45 years) were separated using paramagnetic beads fraction of 0.45 mg/ml, was used as the

were resuspended in distilled water, disrupted in a vortex agitator, and centrifuged. The supernatant was subjected to ion exchange chromatography by a stepwise method (0, 0.2, 0.35, and 0.5 mol/l sodium phosphate buffer). The 0.35 mol/l sodium phosphate fraction, containing a final protein concentration of 0.45 mg/ml, was used as the H pylori water extract protein (HPWEP).

Preparation of media from MKN-28 gastric epithelial cells in response to HPWEP

Confluent MKN-28 cells were incubated with RPMI 1640 medium supplemented with 10% fetal calf serum (FCS) at 37°C in the presence of HPWEP for 48 hours. Media separated by centrifugation for one minute at 10,000 g were immediately added to T cells and cultured for 24 hours. In some experiments, media were stored at −80°C until cytokine measurements.

T cell culture and treatment

Jurkat T cells were grown in complete RPMI 1640 medium supplemented with 10% FCS. Human peripheral T lymphocytes (11 H pylori uninfected healthy male volunteers, aged 31–45 years) were separated using paramagnetic beads (Dynabeads; Dynal, Oslo, Norway) coated with anti-CD3 antibody. Immunostaining with anti-CD3 antibody showed that 95% of cells isolated by this method were peripheral T cells, consistent with results previously reported.17 Jurkat and peripheral T cells were both stimulated with each of the following: media obtained from MKN-28 cells, PMA (20 ng/ml; Sigma, St Louis, Missouri, USA), immobiIised anti-CD3 antibody (0.3 µg/ml; Neo Markers, Fremont, California, USA), recombinant human monocyte chemoattractant protein-1 (MCP-1), IL-7, IL-8, and RANTES (R&D Systems, Minneapolis, Minnesota, USA) for 24 hours. A selective COX-2 inhibitor, 10 µmol NS-398 (Taisho Pharmaceutical, Japan), or a selective COX-1 inhibitor, 0.03 µmol SC-560 (Pharmacia, New Jersey, USA), were added to peripheral T cell media one hour prior to stimulation. In some experiments, Jurkat T cells were also pretreated for one hour with the proteasome inhibitor MG-132 (Peptide Institute, Osaka, Japan) to prevent nuclear factor κB (NFκB) activation.

RT-PCR and cytokine measurements

Total RNA was isolated from MKN-28 cells as per instructions in the Total RNA Isolation kit (Qiagen GmbH, Hilden, Germany). Reverse transcription-polymerase chain reactions (RT-PCR) were performed as previously described16 using the primers shown in table 1. Amplification products were visualised by ethidium bromide fluorescence in agarose gels. Concentrations of MCP-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, IL-7, IL-8, RANTES, and IFN-γ in media from MKN-28 cells incubated with HPWEP were quantified using commercially available specific enzyme linked immunosorbent assay (ELISA) plates. Responses of peripheral T cell IL-4 and IFN-γ to the media or anti-CD3 antibody were also determined by ELISA. The plates were used according to instructions provided by the suppliers (MCP-1, MIP-1α, MIP-1β, IL-7, IL-8, and RANTES (R&D Systems); IFN-γ and IL-4 (Endogen, Cambridge, Massachusetts, USA)). MCP-1 levels were also examined in supernatants of gastric tissue sample homogenates (10,000 g for 15 minutes at 4°C) from 26 H pylori gastritis and 12 H pylori uninfected subjects. All subjects provided informed consent before endoscopy.

Quantitative COX-2 mRNA analysis

Real time quantitative PCR30 was performed to measure COX-2 mRNA expression levels in Jurkat T cells stimulated by media

Table 1 Primes and probes, and selected polymerase chain reaction (PCR) conditions

<table>
<thead>
<tr>
<th>PCR product</th>
<th>Temperature (°C)*</th>
<th>Primer sequence (5′→3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIP-1α</td>
<td></td>
<td>5′-TCA CCG TGT CAG AAT CAT GC-3′</td>
</tr>
<tr>
<td>Sense</td>
<td></td>
<td>5′-TCC ATA GAA GAG GTA GCT GTG G-3′</td>
</tr>
<tr>
<td>MIP-1β</td>
<td>57</td>
<td>5′-AGC AGC TCA GTT CAG TTC CAG GTC A-3′</td>
</tr>
<tr>
<td>Sense</td>
<td>57</td>
<td>5′-CCA TGA AGC TCT GCC TGA CTG TCC T-3′</td>
</tr>
<tr>
<td>IP-10</td>
<td></td>
<td>5′-ACC ATG AAC CCA AGT GCT GCC GCT-3′</td>
</tr>
<tr>
<td>Sense</td>
<td></td>
<td>5′-GCT TCA TCT CAG TTA AGG AGC CCT-3′</td>
</tr>
<tr>
<td>IL-7</td>
<td></td>
<td>5′-ATG TTC CAT GTT TCT TTT AGG TAT ATC T-3′</td>
</tr>
<tr>
<td>Sense</td>
<td>60</td>
<td>5′-TGG ACC CAT TGG TAC AGC GAA G-3′</td>
</tr>
<tr>
<td>IFN-γ</td>
<td></td>
<td>5′-GGA CCC ATA TGT AAA AGA AGC AGA A-3′</td>
</tr>
<tr>
<td>Sense</td>
<td>57</td>
<td>5′-TGT CAC TCT CTT CTC TAC AAT C-3′</td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
<td>5′-AAG GAA CCA TCT CAC TG-3′</td>
</tr>
<tr>
<td>Sense</td>
<td>65</td>
<td>5′-GAT TCT TGG ATACCA CAG AG-3′</td>
</tr>
<tr>
<td>MCP-1</td>
<td></td>
<td>5′-TCT TGT GCC TGC TGC TCA TAG C-3′</td>
</tr>
<tr>
<td>Sense</td>
<td>57</td>
<td>5′-TTC TGA ACC CAC TTC TGC TCG G-3′</td>
</tr>
<tr>
<td>RANTES</td>
<td></td>
<td>5′-ATG AAG GTC TCC GCG GCA GGC-3′</td>
</tr>
<tr>
<td>Sense</td>
<td>65</td>
<td>5′-CTA GCT CAT CTC CAA AGA G-3′</td>
</tr>
<tr>
<td>COX-2</td>
<td></td>
<td>5′-GCCAGAGGTTCCACCGTAAATATGATT-3′</td>
</tr>
<tr>
<td>Forward</td>
<td>60</td>
<td>5′-GCCAGGCCGCAAGCTCA-3′</td>
</tr>
<tr>
<td>Reverse</td>
<td></td>
<td>5′-Fam-AAGTCCACCCCATGGCCAGC-Tamra-3′</td>
</tr>
<tr>
<td>Fluorogenic probe</td>
<td></td>
<td>5′-GCACACCATCTGGCCTGATCAG-3′</td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td>5′-CAAGGCGGATGCGATCTGATGAA-3′</td>
</tr>
<tr>
<td>Forward</td>
<td>60</td>
<td>5′-TGACCACGATGGTACTCAGTATGATT-3′</td>
</tr>
<tr>
<td>Reverse</td>
<td></td>
<td>5′-Fam-ATGCCATGCGGTCATTCCGCTGAC-3′</td>
</tr>
</tbody>
</table>

*Annealing temperature.
MIP, macrophage inflammatory protein; IL, interleukin; IFN-γ, interferon γ; MCP-1, monocyte chemoattractant protein 1; COX-2, cyclooxygenase 2.
from HPWEP exposed MKN-28 cells. In brief, RNA isolated from Jurkat T cells as described above was reverse transcribed and subsequent cDNA amplified in the Model 7700 Sequence detector (PE Applied Biosynthesis, Perkin Elmer, Chiba, Japan) with primers, dual labelled fluorogenic probes, and a Taqman PCR Reagent Kit (Perkin Elmer, Branchburgh, New Jersey, USA). Primers and probes are described in table 1. Known concentrations of serially diluted COX-2 and β-actin cDNA generated by PCR were used as standards for quantification of sample cDNA. Copy numbers of cDNA for COX-2 were standardised to those for β-actin from the same sample.

COX-1 and COX-2 protein expression and COX activity in T cells

COX protein partially purified, as previously described, was visualised by western blotting using anti-human COX-1 antibody (diluted 1:25; IBL, Gunma, Japan) or COX-2 antibody (diluted 1:25; IBL). COX enzyme activity was determined using a crude T cell fraction, as described previously. Jurkat T cells incubated with agents for 24 hours were disrupted by sonication in ice cold 100 mM Tris HCl (pH 7.8) containing 1.0 mMol/l phenylmethylsulphonyl fluoride and 1.0 µmol/l pepstatin at 4°C. Sonicates of T cells were centrifuged at 10,000 g for five minutes and the resultant supernatant, containing both microsomal and cytosolic fractions, used as the enzyme source for measurement of COX activity. COX activity was expressed as the production of PGE₂, as measured by ELISA (Assay Designs, Ann Arbor, Michigan, USA) in pmol/min/mg protein. The anti-MCP-1 neutralising antibody (R&D Systems) completely suppressed MCP-1 release from gastric epithelial cells.

Modified MTT assay

Human peripheral T cell proliferation prepared from 11 H pylori uninfected volunteers as described above was evaluated using a modified MTT assay, a tool known to be useful for quantifying viable cells. Specifically, the MTT assay is a colorimetric assay system which measures the reduction, by viable cell mitochondria, of tetrazolium components into insoluble formazan products. Briefly, 1×10⁶/ml T cells were cultured in RPMI on a 96 well plate in the presence of MKN-28 cell media, anti-CD3 antibody, or MCP-1 for 24 hours, and then each well incubated with 10 µl MTT for 30 minutes. The reaction was stopped by addition of acidified Triton buffer. Samples were measured on a Bio-Rad plate reader at 595 nm.

Immunohistochemistry

Three biopsy specimens obtained from the antrum and body were used for histological assessment. Serial 5 µm sections were stained with haematoxylin-eosin and evaluated using the updated Sydney system. Three slides were prepared, consisting of one antrum and two body tissue specimens, for each patient. When the grade was different between the three slides, the median value was obtained as the representative grade. This median value for each patient was used for calculation of mean values.

For COX-2 immunostaining in the gastric mucosa, 3 µm sections were deparaffinised and endogenous peroxidase activity blocked with 5% H₂O₂ in Tris buffered saline (TBS). Non-specific binding was blocked with 5% rabbit serum in TBS and tissues incubated with anti-COX-2 antibody (IBL; dilution 1:100) in TBS containing 1% bovine serum albumin for two hours. We quantified COX-2 expression levels in gastric tissue samples by counting mononuclear cells expressing COX-2 and evaluating the staining intensity for 26 H pylori gastritis and 12 H pylori uninfected subjects. Overall intensity was arbitrarily graded as 0 (negative), 1 (<5% cells with positive staining), 2 (5–30%), 3 (30–60%, with strong staining), and 4 (>60%, with very strong staining). Then, the relationship between COX-2 intensity and MCP-1 levels was examined in 26 H pylori gastritis subjects. For MCP-1 immunostaining in the gastric mucosa, tissue samples were immediately embedded in OCT compound. Serial sections were incubated overnight with polyclonal rabbit anti-human MCP-1 antibody (1:100). After washing, bound antibody was detected using the LSAB 2 kit (Dako, Carpinteria, California, USA) with diaminobenzidine as the chromogen. As negative controls, primary antibodies were replaced with isotype matched immunoglobulin.

Double labelling immunofluorescence methods and confocal laser scanning microscopy were used to evaluate the colocalisation of immunoreactivity for the pair of mouse anti-human COX-2 (IBL; dilution 1:20) and rabbit anti-human CD3 (Dako; dilution 1:20). Sections were incubated overnight at 4°C with a mixture of the two primary antibodies, and then with FITC or Texas red conjugated secondary antibodies (horse antirabbit IgG (Vector Laboratories, Burlingame, California, USA) dilution 1:100 and goat antirabbit IgG (Vector) dilution 1:100, for COX-2 and CD3, respectively) followed by nuclear counterstaining with 4′, 6-diamidino-2-phenylindole (DAPI; Sigma Chemical) for 15 minutes.

Statistical analysis

Results are expressed as mean (SD). For statistical evaluation of group data, a Students’ t-test for paired data and analysis of variance (ANOVA) for multiple comparisons were followed by Scheffe’s F test. A p value of less than 0.05 was statistically significant.

RESULTS

COX protein expression in peripheral T cells and Jurkat T cells stimulated by MKN-28 cell media

COX-2 expression (lanes c and f in fig 1) was clearly induced in both T cell types stimulated by media from HPWEP exposed MKN-28 cells (fig 1A). In contrast, COX-2 expression was evident only as a faint band in both T cell types when they were directly stimulated with HPWEP (lanes d and g). No COX-2 expression was detected in unstimulated T cells (lanes e and h). To exclude the possibility that COX-2 expression in peripheral T cells is mainly due to macrophage contamination during peripheral T cell preparations, we stimulated peripheral T cells with lipopolysaccharide (LPS) (1 µg/ml). However, we detected no LPS stimulated COX-2 expression in peripheral T cells (data not shown). COX-1 expression levels did not vary for stimulated and unstimulated T cells (fig 1B).

COX activity in stimulated Jurkat T cells

Media from MKN-28 cells incubated with HPWEP induced a significant increase in COX activity in Jurkat T cells (fig 2). Jurkat T cells directly stimulated with HPWEP also showed a small increase in COX activity. These results suggest that in response to HPWEP MKN-28 cells secrete chemokines involved in the increase in COX-2 protein expression and COX activity in Jurkat T cells.

Stimulated cytokine mRNA expression in MKN-28 cells and protein release into the media

Next we measured mRNA levels for several cytokines by specific RT-PCR (fig 3A). MCP-1, IL-7, and IL-8 mRNA expression was stimulated by HPWEP while RANTES mRNA levels were not significantly changed by HPWEP stimulation. Furthermore, IFN-γ, MIP-1α, MIP-1β, and IP-10 mRNA were not expressed in MKN-28 cells incubated with or without HPWEP. We also measured MCP-1, IL-7, and IL-8 media levels by specific ELISA (fig 3B). The stimulated media contained significant levels of MCP-1 (133 (6.9) pg/ml), IL-7 (2.8 (1.2)
were stimulated with MCP-1, and IL-8 at 40 pg/ml, concentrations identified in MKN-28 media, did not stimulate COX-2 expression in Jurkat T cells, as determined by western blot analysis. MCP-1 and MG-132 abrogated COX-2 expression in Jurkat T cells. Pretreatment of Jurkat T cells with MG-132 abrogated both MKN-28 cell media and MCP-1 stimulated COX-2 expression in Jurkat T cells. On the other hand, IL-7 at 5 pg/ml, IL-8 at 40 pg/ml, and RANTES at 600 pg/ml, concentrations identified in MKN-28 media, did not stimulate COX-2 expression in Jurkat T cells, as determined by western blot analysis.

COX-2 mRNA levels and COX activity in Jurkat T cells were inhibited by anti-MCP-1 neutralising antibody

Media from MKN-28 cells incubated with HPWEP induced a significant increase in COX-2/β-actin mRNA levels in Jurkat T cells (fig 5). Jurkat T cells directly stimulated with HPWEP exposed MKN-28 cells media, did not stimulate COX-2 expression in Jurkat T cells. On the other hand, IL-7 at 5 pg/ml, IL-8 at 40 pg/ml, and RANTES at 600 pg/ml, concentrations identified in MKN-28 media, did not stimulate COX-2 expression in Jurkat T cells, as determined by western blot analysis. MCP-1 and MG-132 abrogated COX-2 expression in Jurkat T cells. Pretreatment of Jurkat T cells with MG-132 abrogated both MKN-28 cell media and MCP-1 stimulated COX-2 expression in Jurkat T cells. On the other hand, IL-7 at 5 pg/ml, IL-8 at 40 pg/ml, and RANTES at 600 pg/ml, concentrations identified in MKN-28 media, did not stimulate COX-2 expression in Jurkat T cells, as determined by western blot analysis.
MCP-1 release from gastric epithelial cells

Figure 4 Effects of cytokines and MG-132 on Jurkat T cell cyclooxygenase 2 (COX-2) protein expression. Lane A, COX-2 positive control; lane B, COX-1 positive control; lane C, COX-2 protein expression in Jurkat T cells incubated with media from Helicobacter pylori water extract protein (HPWEP) exposed MKN-28 cells; lane D, COX-2 protein expression in Jurkat T cells pretreated with MG-132 and then incubated with media from HPWEP stimulated MKN-28 cells; lane E, COX-2 protein expression in Jurkat T cells stimulated with monocyte chemoattractant protein 1 at 100 pg/ml; lanes F-H, lack of COX-2 protein expression in Jurkat T cells stimulated with human recombinant IL-8 40 pg/ml (lane F), IL-7 5 pg/ml (lane G), and RANTES 600 pg/ml (lane H). Experiments were repeated four times and the panel shows a representative experiment.

Figure 5 Comparison of cyclooxygenase 2 (COX-2) mRNA production in Jurkat T cells. COX-2/β-actin mRNA levels for stimulated Jurkat T cells were determined by real time polymerase chain reaction, as described in materials and methods. COX-2/β-actin mRNA levels of Jurkat T cells increased following incubation with Helicobacter pylori water extract protein (HPWEP) or HPWEP/MKN-28 medium (as in fig 2) and were suppressed by preincubation with anti-monocyte chemoattractant protein 1 (MCP-1) neutralising antibody [HPWEP/MKN-28 medium + Jurkat T cells + anti-MCP-1Ab]. Each value represents the mean (SEM) of four separate experiments. *p<0.05.

actually suppress COX activity in Jurkat T cells. Anti-MCP-1 neutralising antibody (1:1000 titration) significantly suppressed COX activity by 38% in Jurkat T cells stimulated with MKN-28 cell media but a higher concentration of anti-MCP-1 neutralising antibody (1:300 titration) showed no further suppression of COX activity (39%). In contrast, normal rabbit serum IgG (1 mg/ml) had no effect on COX activity in media stimulated Jurkat T cells.

Proliferation of peripheral T cells

Proliferation of peripheral T cells treated with stimulated MKN-28 cell media and anti-CD3 antibody as a positive control significantly increased (188 (6)% and 308 (16)%, respectively) compared with those treated with unstimulated MKN-28 media alone. NS-398 significantly inhibited proliferation of peripheral T cells (157 (6)% stimulated by the media, while SC-560 did not suppress proliferation of these T cells. Recombinant MCP-1 protein significantly increased proliferation of peripheral T cells (161 (6)%). NS-398 also significantly inhibited proliferation of peripheral T cells stimulated with MCP-1 while SC-560 had no effect, suggesting that MCP-1 released from MKN-28 cells is involved in T cell proliferation via COX-2 activation (fig 6A).

IFN-γ and IL-4 in supernatant from cultured peripheral T cells

IFN-γ concentrations in supernatants from peripheral T cells significantly increased in response to stimulation by media from HPWEP exposed MKN-28 cells (172 (15.8) pg/mg protein) while IL-4 concentrations (2.0 (0.8) pg/mg protein) did not significantly increase in response to stimulation. IFN-γ concentrations also increased in response to stimulation by anti-CD3 antibody (218.3 (24.8) pg/mg protein whereas IL-4 failed to respond (1.8 (0.9) pg/mg protein). NS-398 significantly inhibited this media stimulated IFN-γ release (134.2 (11.2) pg/mg protein) whereas SC-560 did not significantly inhibit IFN-γ release (161.8 (14.1) pg/mg protein). There was no increase in basal IFN-γ levels (27.2 (6.2) pg/mg protein) in response to T cell stimulation by MCP-1 at 100 pg/ml (fig 6B) whereas IL-4 concentration (22.5 (1.9) pg/mg protein) significantly increased. NS-398 significantly inhibited this MCP-1 stimulated IL-4 release (14.6 (1.3) pg/mg protein) while SC-560 had no effect on IL-4 release (20.2 (2.5) pg/mg protein) (fig 6C).

Distribution of COX-2 positive T cells and MCP-1 positive cells in the gastric mucosa

FITC labelled (green) cells in the lamina propria in fig 7A show COX-2 immunoreactivity. Figure 7B shows mucosal T cells labelled with Texas red conjugated anti-CD3 antibodies for the same section. Double immunostaining for COX-2 and mucosal T cells demonstrated the presence of COX-2 positive mucosal T cells in the lamina propria of H pylori infected gastritis mucosa (fig 7C). In contrast, there were no COX-2 positive T cells in H pylori uninfected gastritis mucosa, and just a few CD3 positive cells (fig 7D). In fig 7E, we can see MCP-1 immunoreactivity in surface epithelial cells, as well as in a number of mononuclear cells.

Correlation between MCP-1 levels and intensity of COX-2 expressions in gastric mucosal samples

MCP-1 levels were significantly greater in H pylori infected tissue samples (166.1 (32.6) pg/mg protein) than in uninfected mucosal samples (81.6 (7.7) pg/mg protein). There was a significant correlation (r=0.869, p<0.0001) between intensity of mononuclear cell infiltration and MCP-1 levels in gastric mucosal samples from patients with and without H pylori
DISCUSSION
In this study, we investigated the role of Helicobacter pylori induced cytokine release from gastric epithelial cells in T cell COX-2 expression and activation, in vitro and in vivo. Several lines of evidence in the present study suggest that MKN-28 cells, in response to HPWEP stimulation, secreted various cytokines, including MCP-1, and thus induced T cell COX-2 expression and activity. Firstly, media from HPWEP exposed MKN-28 cells stimulated COX-2 mRNA and protein expression in T cells. Secondly, RT-PCR and specific ELISA showed that in MKN-28 cells, MCP-1 mRNA was expressed and MCP-1 protein released in response to HPWEP. Thirdly, in Jurkat T cells, MCP-1 stimulated COX-2 expression levels and COX activity while anti-MCP-1 neutralising antibody suppressed both COX-2 mRNA expression and COX activity stimulated by MKN-28 cell media. Therefore, MCP-1 seems to play a role in COX-2 expression in T cells. Although other studies to date have shown that IL-8, a CXC chemokine released from gastric epithelial cells, may be involved in mucosal neutrophil infiltration, few have considered the role of MCP-1 expression, a C-C chemokine, in gastric epithelial cells. As far as we know, this is the first report to show a relationship between MCP-1 release from gastric epithelial cells and induction of COX-2 expression leading to T cell activation. However, COX activity in media stimulated Jurkat T cells was not completely suppressed by anti-MCP-1 neutralising antibody. This suggests that other cytokines in the MKN-28 cell media are also involved in COX-2 protein expression and COX activity in T cells. Recently, CXC chemokines as well as C-C chemokines have been shown to act as chemoattractants for T cells and to induce cytokine production from T cells. However, in the present study, we were not able to detect any MIP-1α or MIP-1β in the stimulated media. Furthermore, IL-7, IL-8, or RANTES did not stimulate Jurkat T cell COX-2 protein expression. Thus it appears that in addition to MCP-1, other factors may be involved in T cell COX-2 expression. As media MCP-1 could not stimulate COX-2 protein expression in Jurkat T cells pretreated with MG-132. It appears that MCP-1 may stimulate COX-2 expression via NFκB activation.
We also found that COX-2 induction, as seen with media from MKN-28 cells and MCP-1, might play an important role in peripheral T cell cytokine production and proliferation. NS-398, a specific COX-2 inhibitor, induced a moderate reduction in T cell proliferation, whether stimulated by media or MCP-1 alone.
In parallel with media induced peripheral T cell proliferation, IFN-γ was also released from peripheral T cells in response to the media. This IFN-γ release was again partially inhibited by NS-398, suggesting that COX-2 is also involved in producing IFN-γ, a major cytokine linked to functional T cell polarisation toward a Th1 profile. Thus media from HPWEP exposed MKN-28 cells appear to shift T cells in a Th1 direction. These data are consistent with a recent report suggesting that H pylori induced mucosal inflammation is mediated by Th1 predominance. On the other hand, MCP-1, which also stimulated COX-2 expression and COX-2 dependent T cell proliferation, was found in the present study to stimulate IL-4 secretion from peripheral T cells while having no effect on IFN-γ secretion. This suggests that MCP-1 alone is linked to Th2 polarisation. The results of the present study are also consistent with previous studies linking MCP-1 to Th2 polarisation. Although we do not know why media containing

Figure 6 T cell cytokine production and proliferation. (A) Proliferation of activated peripheral T cells was determined as described in materials and methods. Peripheral T cells were stimulated by anti-CD3 antibody (0.3 µg/ml), Helicobacter pylori water extract protein (HPWEP)/MKN-28 medium, HPWEP/MKN-28 medium+NS-398 (HPWEP/MKN-28 medium in the presence of 10 µM NS-398), HPWEP/MKN-28 medium+SC-560 (0.03 µM), 100 pg/ml monocyte chemoattractant protein 1 (MCP-1), 100 pg/ml monocyte chemoattractant protein 1 (MCP-1)+NS-398 (10 µM), and 100 pg/ml MCP-1+SC-560 (0.03 µM), MKN-28 medium, peripheral T cells treated with unstimulated MKN-28 media. For each MTT assay, samples were determined in triplicate. *p<0.05. (B) Interleukin 4 (IL-4) production was determined as described in materials and methods. Each value represents the mean (SEM) of 11 separate experiments.
MCP-1 failed to stimulate IL-4 secretion from peripheral T cells, other factors in the media might be involved in IFN-γ secretion and IL-4 inhibition in these cells. Alternatively, it is possible that IFN-γ downregulates CD30, a marker of IL-4 response. In the present study, we also found that COX-2 expression in T cells was apparently linked to both Th1 and Th2 polarisation. NS-398 partially inhibited IFN-γ release stimulated by media from HPWEP exposed MKN-28 cells. In addition, NS-398 also induced a moderate reduction in MCP-1 and media stimulated peripheral T cell proliferation and IL-4 release. Thus although COX-2 expression in peripheral T cells induced by cytokines released from gastric epithelial cells plays an important role in T cell function, it seems to have no significant effect on T cell polarisation. The role of COX-2 in T cell activation has recently been shown in humans. These recent studies suggested that COX-2 in T cells may be linked to both Th1 and Th2 polarisation.

Gilroy et al have also reported that in their model, COX-2 may regulate resolution of acute inflammation by generating an alternative set of anti-inflammatory prostaglandins. In a new study on coeliac disease by Kainulainen et al, COX-2 positive T cells were found in the lamina propria of mucosal lesions. In our current study, in addition to COX-2 expression in peripheral T cells in vitro, we also found COX-2 positive T cells infiltrating into the gastric mucosa in vivo. All things considered, we suggest that in chronic H pylori infected gastric mucosa, COX-2 might be involved in the immunomodulatory response, although we have yet to establish its exact role.

Previous studies have reported that MCP-1 is localised in epithelial cells of the colon and that its expression correlates with T cell infiltration in inflammatory bowel disease mucosa. A previous study using PCR analysis indicated possible MCP-1 expression in a gastric epithelial cell line. We demonstrated in the present study that MCP-1 is in fact released from gastric epithelial cell lines in response to HPWEP. In addition, we found for the first time that MCP-1 was localised mainly in gastric epithelial cells and also partly in mesenchymal cells of H pylori infected mucosa. MCP-1 immunoreactivity was limited to surface epithelial cells, with no MCP-1 immunoreactivity seen in either glandular cells or H pylori uninfected epithelial cells. This suggests that H pylori in proximity to pit cell surfaces might affect MCP-1 expression in the gastritis mucosa.

MCP-1 levels in these gastritis tissue samples were closely related to intensity of COX-2 expression, consistent with our in vitro findings that MCP-1 stimulated increases in COX-2 expression levels in T cells. This leads us to hypothesise that MCP-1 released from gastric epithelial cells triggers COX-2 induction and T cell infiltration in H pylori infected gastric mucosa. However, it is not yet known whether MCP-1 released from gastric epithelial cells is actually involved in Th2 polarisation in gastritis mucosa in vivo.

ACKNOWLEDGEMENTS
This work was supported in part by grants from the Ministry of Education, Culture, and Science and from the Ministry of Health, Japan.

Authors’ affiliations
S Futagami, T Hirotsuka, A Tatsuguchi, K Suzuki, M Kusunoki, Y Shinji, K Shinoki, T Iizumi, T Akamatsu, H Nishigaki, K Wada, K Miyake, K Gudis, T Tsukui, C Sakamoto, Third Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
REFERENCES

