Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study

E L Thomas, G Hamilton, N Patel, R O’Dwyer, C J Doré, R D Goldin, J D Bell, S D Taylor-Robinson

Background: Hepatic steatosis is associated with obesity and type II diabetes. Proton magnetic resonance spectroscopy (1H MRS) is a non-invasive method for measurement of tissue fat content, including intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL).

Patients and methods: We used 1H MRS and whole body magnetic resonance imaging (MRI) to assess the relationship between IHCL accumulation, total body adipose tissue (AT) content/distribution, and IMCL content in 11 subjects with biopsy proven hepatic steatosis and 23 normal volunteers.

Results: IHCL signals were detectable in all subjects but were significantly greater in hepatic steatosis (geometric mean (GM) 11.5 (interquartile range (IQR) 7.0–39.0)) than in normal volunteers (GM 2.7 (IQR 0.4–28.6)) v BMI <25 kg/m² (n = 11); GM 1.3 (IQR 0.3–3.6; p = 0.004)). There was a significant association between IHCL content and indices of overall obesity (expressed as a percentage of body weight) for total body fat (p = 0.001), total subcutaneous AT (p = 0.007), and central obesity (subcutaneous abdominal AT (p = 0.001) and intra-abdominal AT (p = 0.001)), after allowing for sex and age. No correlation between IHCL content and IMCL was observed. A significant correlation was observed between serum alanine aminotransferase and liver fat content (r = 0.57, p = 0.006).

Conclusions: Our results suggest that hepatic steatosis appears to be closely related to body adiposity, especially central obesity. MRS may be a useful method for monitoring IHCL in future interventional studies.

Although the use of 1H MRS to quantify IHCL deposition is becoming more widely used, a number of important issues still remain unresolved, including the relationship between IHCL and other body fat depots and the impact of environmental and genetic factors. Furthermore, studies in cadavers suggest that the distribution of lipid in the human liver is non-homogeneous.

In the present study, we have utilised localised hepatic and calf muscle 1H MRS, in conjunction with whole body MRI, to determine the relationship between IHCL accumulation and whole body adipose tissue content and distribution in a cohort of subjects with biopsy proven non-alcoholic fatty liver and also in subjects from the general population without a history of liver or metabolic disease. The results suggest that IHCL accumulation is widespread and appears to be closely related to abdominal fat adiposity.

METHODS
Written informed consent was obtained from all volunteers. Permission for this study was obtained from the Ethics Committee of Hammersmith Hospital, Imperial College London (Rec. 93/4047; 93/3995). The study protocol conformed to the ethical guidelines of the 1975 Declaration of
Hepatic steatosis and adiposity are detailed in table 1. The clinical details of the patient and volunteer populations are given in table 1. Eleven (four females, seven males) had previously been diagnosed as having hepatic steatosis following liver biopsy; the remaining 23 (six females and 17 males) were healthy volunteers from the general population without a prior history of liver or metabolic disease. These healthy volunteers were recruited from the hospital staff or were friends or relatives of the hospital staff. None had abnormal liver biochemistry. No patient or volunteer drank alcohol in excess of 20 g/day and none had a history of alcohol misuse.

Of the 11 patients who had undergone liver biopsy within the previous six months for formal assessment of non-alcoholic steatohepatitis (NASH), all had persistently abnormal liver function tests (LFTs) with elevated serum levels of alkaline phosphatase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; ALT, alanine aminotransferase; γGT, gamma-glutamyl transferase.

Summary measures are mean (SD).

<table>
<thead>
<tr>
<th>% Subcutaneous AT</th>
<th>Controls (n = 23)</th>
<th>NASH (n = 11)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHCL†</td>
<td>2.7 (0.7–9.3)</td>
<td>11.5 (7.0–39.0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Liver volume*</td>
<td>1.7 (1.5–1.9)</td>
<td>1.8 (1.5–2.1)</td>
<td>0.2</td>
</tr>
<tr>
<td>Age (y)</td>
<td>43.1 (11.9)</td>
<td>52.4 (11.9)</td>
<td>0.04</td>
</tr>
<tr>
<td>Sex (F/M)</td>
<td>6/17</td>
<td>4/7</td>
<td>0.7</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.72 (0.08)</td>
<td>1.72 (0.12)</td>
<td>0.9</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80.8 (13.9)</td>
<td>85.9 (16.1)</td>
<td>0.3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.2 (4.1)</td>
<td>29.0 (5.0)</td>
<td>0.3</td>
</tr>
<tr>
<td>% Body AT†</td>
<td>34.0 (6.9)</td>
<td>38.5 (6.1)</td>
<td>0.08</td>
</tr>
<tr>
<td>% Subcutaneous AT†</td>
<td>24.9 (7.2)</td>
<td>28.3 (6.3)</td>
<td>0.2</td>
</tr>
<tr>
<td>% Subcutaneous abdominal AT†</td>
<td>6.7 (2.7)</td>
<td>7.8 (2.5)</td>
<td>0.3</td>
</tr>
<tr>
<td>% Subcutaneous peripheral AT†</td>
<td>18.2 (4.6)</td>
<td>20.5 (4.1)</td>
<td>0.17</td>
</tr>
<tr>
<td>% Internal AT†</td>
<td>9.1 (2.6)</td>
<td>10.2 (1.4)</td>
<td>0.19</td>
</tr>
<tr>
<td>% Intra-abdominal AT‡</td>
<td>5.1 (1.9)</td>
<td>5.6 (0.9)</td>
<td>0.4</td>
</tr>
<tr>
<td>% Non-abdominal internal AT‡</td>
<td>4.0 (0.9)</td>
<td>4.6 (1.0)</td>
<td>0.08</td>
</tr>
<tr>
<td>Soleus IMCL*</td>
<td>19 (13–30)</td>
<td>21 (13–30)</td>
<td>0.5</td>
</tr>
<tr>
<td>Tibialis IMCL*</td>
<td>8.2 (4.3)</td>
<td>10.4 (4.2)</td>
<td>0.17</td>
</tr>
<tr>
<td>γGT*</td>
<td>47 (29–75)</td>
<td>74 (27–212)</td>
<td>0.3</td>
</tr>
<tr>
<td>ALT*</td>
<td>36 (23–56)</td>
<td>89 (74–122)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>ALP*</td>
<td>60 (54–68)</td>
<td>81 (72–98)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Statistical analysis performed on loge transformed variables, summary measures are geometric mean (interquartile range).

With reference to total adipose tissue.

IHCL, intrahepatocellular lipids; BMI, body mass index; AT, adipose tissue; IMCL, intramyocellular lipids; ALP, alkaline phosphatase; ALT, alanine aminotransferase; γGT, gamma-glutamyl transferase.

Helsinki. A cohort of 34 fasted volunteers was studied (table 1). Eleven (four females, seven males) had previously been diagnosed as having hepatic steatosis following liver biopsy; the remaining 23 (six females and 17 males) were healthy volunteers from the general population without a prior history of liver or metabolic disease. These healthy volunteers were recruited from the hospital staff or were friends or relatives of the hospital staff. None had abnormal liver biochemistry. No patient or volunteer drank alcohol in excess of 20 g/day and none had a history of alcohol misuse.

Of the 11 patients who had undergone liver biopsy within the previous six months for formal assessment of non-alcoholic steatohepatitis (NASH), all had persistently abnormal liver function tests (LFTs) with elevated serum levels of alkaline phosphatase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; ALT, alanine aminotransferase; γGT, gamma-glutamyl transferase.

Summary measures are mean (SD).

<table>
<thead>
<tr>
<th>% Subcutaneous AT</th>
<th>Controls (n = 23)</th>
<th>NASH (n = 11)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHCL†</td>
<td>2.7 (0.7–9.3)</td>
<td>11.5 (7.0–39.0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Liver volume*</td>
<td>1.7 (1.5–1.9)</td>
<td>1.8 (1.5–2.1)</td>
<td>0.2</td>
</tr>
<tr>
<td>Age (y)</td>
<td>43.1 (11.9)</td>
<td>52.4 (11.9)</td>
<td>0.04</td>
</tr>
<tr>
<td>Sex (F/M)</td>
<td>6/17</td>
<td>4/7</td>
<td>0.7</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.72 (0.08)</td>
<td>1.72 (0.12)</td>
<td>0.9</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80.8 (13.9)</td>
<td>85.9 (16.1)</td>
<td>0.3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.2 (4.1)</td>
<td>29.0 (5.0)</td>
<td>0.3</td>
</tr>
<tr>
<td>% Body AT†</td>
<td>34.0 (6.9)</td>
<td>38.5 (6.1)</td>
<td>0.08</td>
</tr>
<tr>
<td>% Subcutaneous AT†</td>
<td>24.9 (7.2)</td>
<td>28.3 (6.3)</td>
<td>0.2</td>
</tr>
<tr>
<td>% Subcutaneous abdominal AT†</td>
<td>6.7 (2.7)</td>
<td>7.8 (2.5)</td>
<td>0.3</td>
</tr>
<tr>
<td>% Subcutaneous peripheral AT†</td>
<td>18.2 (4.6)</td>
<td>20.5 (4.1)</td>
<td>0.17</td>
</tr>
<tr>
<td>% Internal AT†</td>
<td>9.1 (2.6)</td>
<td>10.2 (1.4)</td>
<td>0.19</td>
</tr>
<tr>
<td>% Intra-abdominal AT‡</td>
<td>5.1 (1.9)</td>
<td>5.6 (0.9)</td>
<td>0.4</td>
</tr>
<tr>
<td>% Non-abdominal internal AT‡</td>
<td>4.0 (0.9)</td>
<td>4.6 (1.0)</td>
<td>0.08</td>
</tr>
<tr>
<td>Soleus IMCL*</td>
<td>19 (13–30)</td>
<td>21 (13–30)</td>
<td>0.5</td>
</tr>
<tr>
<td>Tibialis IMCL*</td>
<td>8.2 (4.3)</td>
<td>10.4 (4.2)</td>
<td>0.17</td>
</tr>
<tr>
<td>γGT*</td>
<td>47 (29–75)</td>
<td>74 (27–212)</td>
<td>0.3</td>
</tr>
<tr>
<td>ALT*</td>
<td>36 (23–56)</td>
<td>89 (74–122)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>ALP*</td>
<td>60 (54–68)</td>
<td>81 (72–98)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Statistical analysis performed on loge transformed variables, summary measures are geometric mean (interquartile range).

With reference to total body mass.

IHCL, intrahepatocellular lipids; BMI, body mass index; AT, adipose tissue; IMCL, intramyocellular lipids; ALP, alkaline phosphatase; ALT, alanine aminotransferase; γGT, gamma-glutamyl transferase.

MRS of the liver

1H MR spectra were acquired at 1.5 T from the right lobe of the liver using a PRESS sequence (TR 1500 ms/TE 135 ms) without water saturation and with 128 signal averages. Transverse images of the liver were used to ensure accurate positioning of the (20×20×20 mm) voxel in the liver, avoiding blood vessels, the gall bladder, and fatty tissue. Spectra were analysed in the time domain using the AMARES algorithm included in the MRUI software package.26 Peak areas for all resonances were obtained and lipid resonances were quantified with reference to water resonance, after correcting for T1 and T2. These T1 and T2 values for IHCL were obtained by an experienced physicist (GH). The following values were obtained: T1 of the CH2 resonance of IHCL = 480 ms; T1 of the water resonance = 1230 ms; T2 of the CH2 resonance of IHCL = 50 ms; T2 of the water resonance = 36 ms.

MRI of the liver

Imaging data were acquired with a 1.5 T Eclipse multinuclear system (Philips Medical Systems, Cleveland, Ohio) using a 45 cm diameter elliptical body coil, a 14 cm diameter surface coil, and a T1 weighted spin echo sequence with a repetition time (TR) of 800 ms, echo time (TE) of 16 ms, and four signal averages. Between 25 and 35 (depending on liver size from pilot images) 6 mm thick transverse images were acquired per subject. Images were analysed using an image segmentation software program in which liver contours were manually drawn for each slice.24 Liver volumes were calculated from this by multiplying the liver tissue volume of each slice by slice thickness (6 mm).

Figure 1 A transverse image through the abdomen showing the two voxel positions used to study regional variation in hepatic fat content.
Results are expressed as percentage ratio of the CH₂ lipid peak area relative to the water peak area.

To assess the reproducibility of the ¹H MRS results, analyses were repeated in triplicate and the coefficient of variation measured. Intra-examination reproducibility was measured by acquiring three voxels in the same position in a single examination while inter-examination reproducibility was assessed by acquiring a voxel from the same position in the liver, in each given subject, on three different occasions.

To determine potential regional lipid variation within the liver, ¹H MR spectra were obtained in 12 volunteers by positioning a same sized voxel in two different positions within the right lobe of the liver (fig 1).

**MRS of muscle**

Proton MR spectra were acquired from 20×20×20 mm voxels localised to the soleus and tibialis muscles of the left calf using a PRESS sequence (TR 1500 ms / TE 135 ms) with 256 signal averages, as previously described. Peak areas for all resonances were obtained and lipid resonances were quantified with reference to total creatine after correcting for T₁ and T₂.

**Total body adipose tissue (AT) content**

Rapid T₁ weighted MR images (TR 36 ms, TE 14 ms) were acquired on a Philips 1.0 T HPQ system, as previously described. All images were collected at isocentre to avoid image distortion with the patient, in a prone position, being moved through the magnet to acquire full body coverage. A validated semiautomatic “in-house” program was then used to segment and analyse the AT. Total body AT, subcutaneous, total internal, subcutaneous abdominal, and intra-abdominal AT volumes were measured.

**Biochemistry**

Blood was drawn on the same day as the initial MR scan for serum ALT, ALP, and γGT measurements, as recommended by the European Committee for Clinical Laboratory Standards.

**Statistical analysis**

Normally distributed results are expressed as mean (SD). Log transformation was used for IHCL, liver volume, and triglyceride levels in the liver and soleus muscle as their distribution was positively skewed. Results for log transformed variables are presented as geometric mean (GM) and interquartile range (IQR). A two sample t test was used for comparisons of two independent mean values. The relationship between IHCL, liver volume, and individual AT depots was examined using multiple regression analysis to assess the independent effects of regional adiposity. Multiple regression analysis was performed to predict liver fat from the percentage fat in each compartment after adjusting for age and sex. The level of significance was set at 5%. Data were analysed by CD using Stata (StataCorp 2001 Stata Statistical Software, Release 7.0; Stata Corporation, College Station, Texas, USA).

**RESULTS**

Results of the liver MRS, muscle MRS, whole body AT content measurement, and blood biochemistry in the NASH control groups are summarised in table 1.

**¹H MRS of the liver**

Typical ¹H MR spectra from the liver of subjects with different degrees of fatty infiltration are shown in fig 2. IHCL was detectable by MRS in all of these subjects. Hepatic water was used as an internal standard, giving a geometric mean IHCL CH₂/water content for this cohort of subjects of 11.5 (IQR 7.0–39.0, range 1.3–74.9). To assess the presence of IHCL accumulation in otherwise normal individuals without a history of abnormal liver function tests, ¹H MR spectra were obtained from 23 healthy volunteers with no known history of metabolic or liver disease. IHCL was detectable in all 23 subjects, with no significant differences between male and female volunteers (male GM 4.7 (IQR 1.8–10.8) v female GM 3.7 (IQR 0.3–28.6); p = 0.72). However, the geometric mean content for these subjects, separately or together, was significantly lower (2.7 (IQR 0.7–9.3, range 0.2–77.4); p = 0.02) than for those with biopsy proven fatty liver infiltration (table 1). This difference was not related to potential differences in MR relaxation characteristics (T₁ and T₂) in these subjects, as increasing the repetition time (TR = 20 s) or decreasing echo time (TE = 40 ms) had little effect on the observed inter-individual differences (results not shown).

**Reproducibility**

Mean inter-examination coefficient of variation (CoV) for IHCL CH₂/water examination, assessed by taking the subject in and out of the scanner several times, then repeating imaging and repositioning the voxel each time, was found to be 7.0% (range 4.0–11.7%). As expected, the mean intra-examination CoV was significantly lower (6.0%).

**Heterogeneity of liver fat**

In a randomly selected subcohort of 12 subjects, ¹H MR spectra were obtained from two different locations within the right lobe of the liver. Overall, there appeared to be no significant regional differences in relative levels of IHCL although there was substantial interindividual variation, with some volunteers having a difference in fat content of up to 50% between regions whereas in others it was less than 1% (fig 3). This variation in fat content did not appear to be related to anatomy or the relative amount of fat present in the liver.

**Liver volumes**

Liver volumes were obtained from the MRI images acquired during the examination and ranged in size from 1.36 to 3.0 l. To evaluate the reproducibility of liver volumes, each volume...
Hepatic steatosis and adiposity

Figure 3 Difference in intrahepatocellular lipid (IHCL) content between voxels placed in different positions in the left lobe of the liver.

was measured three times in a subset of 12 subjects; the mean CoV for measurement of liver volume was 1.16%.

As expected, the volume of a subject’s liver was related to IHCL content \((r = 0.62, p < 0.01)\). There were also significant correlations between liver volume and body weight \((r = 0.72, p < 0.01)\), BMI \((r = 0.55, p < 0.01)\), intra-abdominal AT \((r = 0.61, p < 0.01)\), non-abdominal internal AT \((r = 0.44, p = 0.03)\), and intra-abdominal AT as a percentage of body weight \((r = 0.40, p = 0.05)\).

IHCL and whole body AT content

A wide range of IHCL content was observed in our cohort of subjects. Examining the total group with respect to BMI, independent of whether they were in the NASH or control group, overweight and obese subjects generally showed significantly higher levels compared with lean subjects (BMI \(> 25 \text{ kg/m}^2 \) \((n = 23)\): GM 7.7 (IQR 4.0–28.6) \(v\) BMI \(< 25 \text{ kg/m}^2 \) \((n = 11)\): GM 1.3 (IQR 0.3–3.6); \(p = 0.004\)).

Multiple regression analysis revealed, after allowing for sex and age, a significant relationship between IHCL content of the liver and

(a) total body fat expressed as a percentage of body weight (IHCL increased by 22% for each 1% increase in AT (95% confidence interval (CI) 10–36%); \(p = 0.001\)),

(b) regional adiposity (IHCL increased by 21% for each 1% increase in total subcutaneous AT (95% CI 6–38%; \(p = 0.007\)), and

(c) central obesity (IHCL increased by 72% for each 1% increase in subcutaneous abdominal AT (95% CI 27–133%), \(p = 0.001\), and IHCL increased by 104% for each 1% increase in intra-abdominal AT (95% CI 37–205%), \(p = 0.001\)).

Including an additional term for the NASH population did not significantly improve the fit of any of the multiple regression models.

IHCL and IMCL content

Multiple regression analysis showed no significant correlation between IHCL and intramyocellular lipids (IMCL) in the tibialis and soleus although there was a significant relationship between these fat depots (tibialis muscle, \(p = 0.004\); soleus muscle, \(p = 0.04\)) and percentage body fat, after accounting for sex and age.

IHCL and LFTs

The relationship between IHCL and the results of LFTs was also investigated. Multiple regression analyses revealed a significant relationship between ALT and liver fat content \((r = 0.57, p = 0.006)\) (fig 4) but not between IHCL and either ALP or γGT.

DISCUSSION

This in vivo study aimed to evaluate the relationship between IHCL levels and body adiposity. The results show that measurable IHCL is present in healthy individuals with no history of liver function test abnormalities and no known history of metabolic or liver disease. We have found that IHCL is positively correlated to regional AT content. However, we found no correlation between IHCL content and IMCL content.

To our knowledge, this is the first systematic study of the relationship between IHCL level and body adiposity. In a previously published in vitro study of 107 unselected cadaver livers, Donhoffer detected IHCL in all subjects, with a triglyceride content ranging from 1.7% to 25.6%.29 They suggested that normal livers may contain as much as 5.5% triglyceride (wt weight) and that a triglyceride content greater than 8% may be a reliable sign of pathological fatty liver.29 In our in vivo study, we also found a wide range of hepatic fat content in the study population as a whole (GM 4.4 (IQR 1.3–12.4)), with resonances from hepatic triglycerides observable in all volunteers examined, even though they had no history of liver disease. Lower levels of IHCL (<5%) were generally found in younger and healthier volunteers, while older less active subjects showed higher IHCL content.

Similar findings have been reported in a number of in vivo studies. Seppala-Lindroos and colleagues18 have reported a wide range of IHCL deposition in the general population using 1H MRS. They subdivided their cohort of subjects into low IHCL content (1.7±0.2%) and high IHCL content (10.5±2.0%) although no clear physiological/biochemical rationale for this “cut off” was presented. The former group was associated with “healthier subjects”, including significantly lower LFT and plasma lipids levels although there were no significant differences in BMI, percentage body fat, or VO2max. Tarasow and colleagues30 have also reported wide ranges of IHCL deposition by 1H MRS in healthy volunteers, attributing this to a possible tendency to obesity, while Hwang and colleagues16 studied 15 non-diabetic subjects and found IHCL content of 10.9±7.2%. In subjects with familial hypobetalipoproteinaemia, Schonfeld and colleagues31 found increased IHCL content compared with controls although the latter still showed considerable levels of hepatic triglycerides. Liver fat percentages were 16.7±11.5 and 3.3±2.9.

The geometric mean for IHCL content observed in the present study was similar (GM 4.4 (IQR 1.3–12.4)) to those quoted in the literature, supporting previous in vitro and in vivo findings that hepatic fat infiltration is widespread in the...
hepatic steatosis with elevated transaminases considered by the study population as a whole. This is surprising as an elevated γGT is generally thought to be a serum marker of hepatic steatosis with elevated transaminases considered by many to clinically represent hepatic inflammation in NASH.

Previous studies have produced conflicting results with regard to distribution of triglycerides in the liver. Kremer and colleagues, in a study of 29 human cadavers, found significant variation in the fat content across the liver. The authors showed that the degree of variation was greatest in subjects with the highest liver fat content. However, Gaal and Husveth, in a study of nine dairy cows, showed that the lipid content of a liver biopsy (0.08–0.15 g) was almost identical to that from a large (150–200 g) liver sample taken from the same animal. In vivo, Tarasow and associates have reported a variation of 6.5–87.4% in IHCL from two different positions in the liver in five subjects. Schonfeld and colleagues reported a variation of 6.5–87.4% in IHCL from two different individuals. Intra-abdominal and abdominal subcutaneous AT may for example lead to increased portal flux of free fatty acids to the liver and increased circulating plasma triglycerides, respectively, both of which could lead to reduced lipolysis and increased IHCL stores. As free fatty acid flux from abdominal fat depots have also been shown to correlate with insulin resistance, this may represent a link between obesity, liver fat, and insulin resistance.

In summary, this study has shown that liver triglyceride deposition is closely related to abdominal AT content in subjects with biopsy proven NASH and in healthy subjects. The large individual variation may possibly reflect independent genetic/environmental factors. Our results also confirmed the ability of MRS to study the process of triglyceride accumulation in the liver non-invasively. A combination of this technique and 31P MRS, which gives a handle on cell membrane turnover and fibrosis, may help in the future to elucidate the underlying relationships associated with the progression from fat infiltration of the liver to NASH and cirrhosis. MRS also holds the promise of being an invaluable in vivo tool in further human interventional and genetic studies.

ACKNOWLEDGEMENTS

The authors would like to thank Professor GM Bydder and Dr W Curati, MRU Unit, Hammersmith Hospital, Imperial College London, for their help with this project. We also like to thank the British Medical Research Council (UK) for their financial support, including grant number G9900178.

REFERENCES

Hepatic steatosis and adiposity


EDITOR’S QUIZ: GI SNAPSHOT

Oesophageal ulceration: more than meets the naked eye?

Clinical presentation
A 56 year old male presented with an eight week history of dyspepsia, dysphagia, and epigastric tenderness. Symptoms were controlled on a trial of proton pump inhibitor (lansoprazole) but recurred when this was discontinued. He also had a history of asthma, with numerous admissions to hospital due to bronchospasm. His medications at presentation included fluticasone, ipratropium, and salbutamol inhalers along with montelukast and theophylline. He was a non-smoker, was not diabetic, and had no other documented illnesses. Endoscopy revealed a focal area of ulceration in the lower third of the oesophagus, in addition to more extensive confluent ulceration in the middle third. There was also duodenitis and ulceration of the first part of the duodenum. The Clo test was negative. Oesophageal biopsies (fig 1) confirmed ulceration of the oesophagus and revealed acute on chronic inflammatory granulation tissue.

Question
What is the cause of this man’s oesophageal ulceration?
See page 133 for answer
This case is submitted by:
J W Cash
Royal Victoria Hospital, Belfast, Northern Ireland, UK
C McConville
Lagan Valley Hospital, Lisburn, Northern Ireland, UK
D O’Rourke
Belfast City Hospital, Northern Ireland, UK
T Harding
Department of Medicine, Lagan Valley Hospital, Lisburn, Northern Ireland, UK

Correspondence to: Dr J Cash, Department of Medicine, Royal Victoria Hospital, Grosvenor Rd, Belfast BT12 6BA, UK; w.cash@qub.ac.uk
doi: 10.1136/gut.2003.033308

Figure 1 Oesophageal biopsy.