FLOW-BASED ADHESION ASSAYS USING HUMAN HSEC DEMONSTRATED THAT B CELLS WERE CAPTURED FROM FLOW AND ADHERED TO HUMAN HSEC BUT THEY HAD LIMITED MOTILITY IN COMPARISON TO T CELLS. B CELLS ALSO UNDERWENT TRANSMIGRATION AND CLEVER-1 BLOCKADE LED TO A REDUCTION OF B CELLS UNDERGOING TRANSMIGRATION. BLOCKADE OF CLEVER-1, VAP-1 AND ICAM-1 IN COMBINATION HAD A CUMULATIVE EFFECT ON TRANSMIGRATION, SUGGESTING THAT ALL THREE RECEPTORS CLEVER-1, VAP-1 AND ICAM-1 IN COMBINATION HAD A CUMULATIVE EFFECT ON TRANSMIGRATION. CLEVER-1 IS A POTENTIAL TARGET FOR MODULATING B CELL RECRUITMENT TO THE HUMAN LIVER.

Results Flow-based adhesion assays using human HSEC demonstrated that B cells were captured from flow and adhered to human HSEC but they had limited motility in comparison to T cells. B cells also underwent transmigration and CLEVER-1 blockade led to a reduction of B cells undergoing transmigration. Blockade of CLEVER-1, VAP-1 and ICAM-1 in combination had a cumulative effect on transmigration, suggesting that all three receptors contributed to B cell transmigration.

Conclusion Up to now most interest has focused on the role of T cells but hepatic infiltrates contain B cells and B cells have been directly implicated in models of liver disease and as drivers of liver fibrosis. This work demonstrates that CLEVER-1 is an adhesion molecule within the hepatic sinusoids and contributes to B cell transmigration. CLEVER-1 is a potential target for modulating B cell recruitment to the human liver.

Introduction Hepatobiliary injury, associated with intrahepatic cholestasis and biliary hyperplasia, is a commonly encountered adverse effect in man in response to certain drugs and toxins. Some human diseases affecting the biliary tree can be modelled in rats by ingestion of the hepatobiliary toxin, α-naphthylisothiocyanate (ANIT). The ability to detect biliary hyperplasia and associated hepatobiliary injury non-invasively, by longitudinal liver specific assessment, would be of value in the development of novel therapies and aid towards the understanding of hepatic pathophysiological processes.

Aim To investigate the use of in vivo hepatic phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) to provide potential biomarkers for hepatobiliary injury linked to biliary hyperplasia in the ANIT-fed rat model and to investigate longitudinal changes according to dose over a 2-week time period.

Method All experiments were performed in compliance with the UK Animals (Scientific Procedures) Act 1986. Chronic hepatobiliary dysfunction was investigated in rats fed a diet supplemented with ANIT at three doses (ANIT_0.025%, ANIT_0.04% and ANIT_0.05%) for 2 weeks using in vivo hepatic 31P MRS. In vivo 31P MRS data collected at baseline and weeks 1 and 2 for each of the three ANIT groups were compared to results from corresponding pair-fed controls (six groups of n=8 per group). Serum was collected for clinical chemistry and tissue for both histology and ex vivo 1H magic angle spinning (MAS) MRS after sacrifice at 2 weeks.

Results In vivo 31P MRS showed phosphodiesters (PDE), relative to total phosphorus signal (TPh), were significantly increased (p<0.05) after 1 and 2 weeks in both ANIT 0.05% and ANIT 0.04% groups relative to controls, but an increase in phosphomonoesters (PME)/TPh was observed in the ANIT 0.05% group only. Clinical chemistry findings confirmed chronic liver injury to some extent at all ANIT dosages. Histological findings included a dose related increase in both severity of biliary hyperplasia and focal hepatocellular necrosis with increasing doses of ANIT. Ex vivo 1H MAS MRS findings supported the in vivo MRS findings in that the peak assigned to glycerophosphocholine and phosphocholine (GPC+PC) was relatively increased in the ANIT 0.05% and ANIT 0.04% groups (p<0.05) relative to the respective control groups.

Conclusion ANIT-induced moderate hepatobiliary dysfunction was associated with a dose dependent increase in phosphodiesters in vivo and choline-containing phosphodiesters and phosphomonoesters ex vivo. Such data suggest a role for magnetic resonance spectroscopy techniques as a non-invasive way of investigating hepatobiliary dysfunction.

Introduction Recent evidence suggests a role for the coagulation cascade in promoting liver fibrosis, but with the exception of thrombin the expression and role of individual coagulation proteins in the pathogenesis of liver fibrosis is poorly understood. Furthering our understanding of the role of specific coagulation proteins is essential when considering viable targets for anti-fibrotic therapies.

Aim To quantify and qualify the expression of tissue factor (TF) and fibrin/fibrinogen in both murine liver fibrosis and human hepatitis C (HCV) related liver fibrosis.

Method C57BL/6J mice (n=7), aged 8 weeks old, were treated with carbon tetrachloride by intraperitoneal injection for a period of 4 weeks to induce liver fibrosis. Animals were then culled and livers extracted and fixed in formalin. Mice injected with normal saline acted as normal controls. For human tissue, archived liver biopsy specimens (n=11) performed for the clinical staging of chronic HCV infection were used. An indirect immunohistochemical detection technique was employed with digital image analysis to qualify and semi-quantify expression of TF and fibrin/fibrinogen in tissue sections.

Results In murine liver tissue, TF and fibrin/fibrinogen were expressed in hepatic sinusoids, peri-fibrotic areas and fibrotic septa. Digital image analysis demonstrated significant upregulation of TF (p=0.002) and fibrin/fibrinogen (p=0.009) in fibrotic vs normal control liver tissue. In HCV human liver tissue, TF and fibrin/fibrinogen expression were upregulated in hepatic sinusoids and fibrotic areas. Digital image analysis demonstrated a significant correlation between TF expression and both fibrosis grade (r=0.71; p=0.015) and inflammatory score (r=0.79; p=0.004). Fibrin/fibrinogen expression was significantly correlated with inflammatory score (r=0.82; p=0.007), with a borderline correlation with grade of fibrosis (r=0.66; p=0.056). A significant correlation between TF and fibrin/fibrinogen expression was demonstrated (r=0.82; p=0.024).

Conclusion The hepatic expression of TF and fibrin/fibrinogen is upregulated with fibrosis and inflammation. These findings suggest that activation of the coagulation cascade occurs in and may contribute to the generation of hepatic fibrosis. The therapeutic potential of targeted inhibition of specific coagulation proteins need to be evaluated in fibrotic liver disease.