








(figure 2D) and Parabacteroidetes genus (figure 3B) whereas the
Coriobacteriaceae family (figure 2E) and Olsenella (figure 3C) and
the Mucispirillum genera (figure 3E) disappeared. The gut
microbial signature of each metabolic phenotype is summarised
in figure 4.

Plasma inflammation and gut paracellular permeability are
associated with metabolic phenotypes
To further determine whether changes in the gut microbiota
could be associated with bacterial inflammatory factors, we
measured the plasma concentration of LPS. Fasting LPS plasma

Figure 2 Caecum microbial profiles vary according to metabolic phenotypes. Pyrosequencing analysis of (A, B) phyla and (CeE) taxa families in mice
fed a high-fat diet (HFD) which became diabetic (HFD-D) or diabetes-resistant (HFD-DR) or mice fed HFD supplemented with gluco-oligosaccharides
(HFD+GOS). Data are shown as a percentage of the total identified sequences per group.
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levels increased in HFD-D mice compared with HFD-DR mice
but were reduced when the gut microbiota was challenged by
GOS treatment (figure 5A). Measurement of circulating cyto-
kines showed that, of the cytokines TNFa, IL-6 and PAI-1, the
latter was significantly increased in HFD-D mice compared with
HFD-DR mice and GOS treatment significantly modified this
parameter (figure 5B).

To understand whether a different endotoxaemia could be
related to altered gut permeability, as already reported,4 we
measured permeability using Ussing’s chambers. Paracellular
permeability in the ileum and caecum was significantly increased
in HFD-D mice compared with all the other groups (figure 5C,D),
but not significantly (p>0.05) in the colon (figure 5E). In the
ileum this was coupled to a reduction in occludin and junctional

Figure 3 Caecum microbial genera of different metabolic phenotypes. (A-E) Pyrosequencing of genera in mice fed a high-fat diet (HFD) that became
diabetic (HFD-D), diabetes-resistant (HFD-DR) or mice fed a diet supplemented with gluco-oligosaccharides (HFD+GOS). Data are shown as
a percentage of the total identified sequences per group.

548 Gut 2012;61:543e553. doi:10.1136/gutjnl-2011-301012

Gut microbiota

 on S
eptem

ber 16, 2019 by guest. P
rotected by copyright.

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2011-301012 on 22 N
ovem

ber 2011. D
ow

nloaded from
 

http://gut.bmj.com/


adhesion molecule A (JAM-A) compared with HFD-DR mice but
not ZO-1 (p>0.05, figure 5A in online supplement). Conversely,
HFD+GOS mice showed an increase in all the studied proteins
compared with the other groups (figure 5A in online supple-
ment). Similar results were obtained in the caecum, except for
ZO-1 which did not vary significantly (p>0.05) between all the
groups (figure 5B in online supplement).

WAT and metabolic adaptation
We then focused on subcutaneous and visceral WAT as a major
target of gut microbiota.12e15 The weight of both subcutaneous
and visceral WAT depots increased in HFD-D mice compared
with HFD-DR mice. GOS treatment prevented this increase
(figure 6A in online supplement). Plasma leptin and resistin were
increased in the HFD-D metabolic phenotype as well as subcu-
taneous mRNA concentrations of both, and the increases were
prevented by GOS treatment (figure 6B,C in online supplement).
Apelin expression was increased in HFD-D subcutaneous and
visceral WATwhereas the adiponectin mRNA was not changed
in any group (figures 6D and 7B in online supplement).

In all the groups the mRNA concentration of metabolic genes
(GLUT4, FAS, AP2) was similar (p>0.05; figures 6E and 7C in
online supplement). No relevant differences (p>0.05) were

observed in inflammatory marker mRNAs among all groups in
subcutaneous (figure 6F in online supplement) or visceral WAT
(figure 7D in online supplement).
The adipocyte area increased in HFD-D mice compared with

HFD-DR mice but GOS treatment did not significantly affect
this parameter (p>0.05, figure 6A,B). Subsequently, cells from
the SVF were isolated and studied by FACS analysis. The total
SVF cell number was increased in HFD-D mice compared with
HFD-DR mice and GOS treatment prevented the occurrence of
the diabetic metabolic phenotype (figure 6C). Furthermore, we
characterised different SVF cell populations. Preadipocytes,
macrophages and lymphocytes were increased in the HFD-D
group compared with the HFD-DR group. HFD+GOS mice had
a reduced overall lymphocyte cell count (notably T lympho-
cytes) compared with HFD-DR mice, although the difference
was not statistically significant (figure 6D).
Immunohistochemistry confirmed the FACS data, showing

a significant increased percentage of macrophages per adipocyte
count in HFD-D mice compared with HFD-DR mice and
no significant differences compared with HFD+GOS mice
(figure 6E).
In agreement with increased immunoinflammatory cell

accumulation, both NF-kB and mTOR phosphorylation

Figure 4 Cluster identification of gut microbial profiles of the different metabolic phenotypes: (A) phyla, (B) families, (C) genera and (D) overall taxa
shown according to metabolic phenotypes for mice fed a high-fat diet (HFD) that became diabetic (HFD-D, closed squares), diabetes-resistant mice
(HFD-DR, open squares) and mice fed a diet supplemented with gluco-oligosaccharides (HFD+GOS, closed triangles). Pearson tree analysis was
performed to cluster groups (top) and taxa (left side) of each heat map.

Gut 2012;61:543e553. doi:10.1136/gutjnl-2011-301012 549

Gut microbiota

 on S
eptem

ber 16, 2019 by guest. P
rotected by copyright.

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2011-301012 on 22 N
ovem

ber 2011. D
ow

nloaded from
 

http://gut.bmj.com/


increased in HFD-D mice compared with HFD-DR mice.
Conversely, HFD+GOS mice showed a reduced non-significant
trend for NF-kB and a similar trend, but to a lesser extent, for
mTOR activation (figure 6F). In addition, no significant changes
(p>0.05) were observed in any groups in insulin signalling and
energy metabolic pathways, except for the activation of AKT
which was significantly increased in HFD+GOS mice compared
with HFD-D mice (figure 7 in online supplement).

Changes in the gut microbiota slightly affected liver and skeletal
muscle during metabolic adaptation
To determine whether the metabolic endotoxaemia also affected
other insulin-responsive organs, we quantified proteins involved
in liver and skeletal muscle metabolism. Notably, HFD-D mice
had a significant increase in liver weight compared with HFD-
DR mice (figure 7A). Surprisingly, HFD+GOS mice also showed
a significant increase in liver weight compared with HFD-DR
mice, and to the same extent as HFD-D mice (figure 7A).
Moreover, TNFa and IL-6 mRNA concentrations did not vary
significantly (p>0.05) whatever the group, whereas PAI-1
mRNA significantly increased in HFD-D mice compared with
HFD-DR and HFD+GOS mice (figure 7B). Surprisingly, liver
insulin (figure 7C), energy (figure 7D) and inflammatory path-
ways (figure 7E) did not show significant changes (p>0.05)
between all the groups.

We subsequently investigated skeletal muscle and found that
only TNFa mRNA increased in HFD-D mice compared with
HFD-DR and HFD+GOS mice (figure 8A in online supplement).

Again there were no major changes (p>0.05) in insulin, energy
and inflammatory pathways between all the groups (figure 8B in
online supplement).

DISCUSSION
In this study we have shown that diabetes-sensitive (HFD-D)
and diabetes-resistant (HFD-DR) metabolic phenotypes are
associated with a specific gut microbial profile, aside from
changes in genetic background and diet. Moreover, targeting the
gut microbiota of HFD-fed mice with dietary fibres prevented
the occurrence of the diabetic phenotype and showed a specific
microbial signature. Our data further corroborate increased gut
permeability and WAT plasticity during type II diabetes.
The microbial diversity of different metabolic phenotypes

displayed a wider variation in OTUs than read counts,
suggesting that a given metabolic phenotype (ie, HFD+GOS)
could be selecting specific bacterial populations (ie, Bacter-
oidetes), as shown for prebiotics.25 A meticulous examination
revealed that the Bacteroidetes to Firmicutes ratio increased in
the diabetic phenotype, confirming the results reported in
patients with type II diabetes26 but contrasting with findings
reported by Gordon et al.7 However, we aimed to study type II
diabetes per se, intentionally lacking obesity, which explains the
aforementioned mismatch. In fact, obesity has been shown as
a main driving factor of changes in the gut microbiome between
lean and obese twins where, despite different microbe assembly,
a core microbiome exists and divergence from it leads to
a pathological state (ie, lean vs obese).22

Figure 5 Plasma inflammation and gut paracellular permeability. (A) Fasting plasma lipopolysaccharide (LPS) levels, (B) cytokine concentrations in
plasma and (CeE) intestinal paracellular permeability in the ileum (C), caecum (D) and colon (E) in mice fed a high-fat diet (HFD) that became diabetic
(HFD-D), diabetes-resistant (HFD-DR) and in mice fed a diet supplemented with gluco-oligosaccharides (HFD+GOS). Data are shown as mean 6 SEM;
*p<0.05, **p<0.01 (unpaired Student t test; n¼6e12 per group). IL, interleukin; PAI-1, plasminogen activator inhibitor 1; TNFa, tumour necrosis
factor a.
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Figure 6 Cell architecture and inflammation in visceral white adipose tissue (WAT). (A) Adipocyte area and distribution, (B) mean adipocyte area, (C)
total cell count of the stroma vascular fraction (SVF)/g visceral WAT, (D) endothelial (CD31+), preadipocytes (CD34+), macrophages (F4/80/CD11b
+), total lymphocytes and T cells (CD3+), (E) macrophage immunostaining and number (%) per adipocyte count, (F) western blot analysis of
phosphorylated and total proteins involved in inflammatory pathways in mice fed a high-fat diet (HFD) which became diabetic (HFD-D), diabetes-
resistant (HFD-DR) and mice fed a diet supplemented with gluco-oligosaccharides (HFD+GOS). Data are shown as mean 6 SEM; *p<0.05,
**p<0.01, ***p<0.001 (unpaired Student t test; n¼5e12 per group).
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Indeed, we identified specific changes in genera (Oscillibacter,
Parabacteroidetes, Alistipes and Olsenella, Helicobacter and Mucis-
pirillum) as a signature of the metabolic phenotype. The reasons
for the changes in the gut microbiota remain unclear, despite
unchanged genetic background and diet. Furthermore, this result
is specifically linked to caecal microbiota. We cannot exclude the
possibility that a different outcome could have occurred in other
gut regions. A different food intake and/or the immune system
could also have contributed to shape the microbiota, as reported
in other studies.27e30 To determine whether gut microbiota is the
cause or consequence of the metabolic phenotypes, we specifi-
cally modified it with dietary fibres.25 31 This treatment
dramatically changed the gut microbiota and then the metabolic
phenotype, suggesting that it could be causal, although demon-
stration of the causality needs further evaluation in germ-free
mice. In addition, despite the diabetic state being normalised, the
HFD+GOS microbiota still remained different from the non-
diabetic HFD-DR mice, suggesting that several gut microbiota
profiles could be a signature for the same metabolic phenotype.
The pathophysiological mechanisms involved in the induction of
different metabolic phenotypes might differ. To gain some
information on the link between microbial profiles and metabolic
phenotypes we characterised numerous tissue features.

Our data suggest that the impact of the specific microbiota
was facilitated by increased gut permeability in both the ileum
and caecum of HFD-D mice, resulting in increased endotox-
aemia. This change could indeed dramatically affect metabolism
since the intestinal barrier plays a critical role in the transport of
nutrients and macromolecules and, at the same time, provides an
effective barrier to harmful macromolecules and microorgan-
isms.32 Loose tight junctions could therefore allow nutritional

and other microbial substances to cross the intestinal epithelium
and target WAT, resulting in increased adipokine production
(leptin and resistin), adipose cell size and SVF cell number, thus
confirming the literature.12e15

Conversely, neither liver nor skeletal muscle showed major
metabolic modulations besides an increased TNFa mRNA
concentration in HFD-D mice, suggesting that these organs do
not play a pivotal role during metabolic adaptation as an early
event shaping the metabolic phenotypes.
On the other hand, WAT is an important player in the control

of metabolic inflammation leading to insulin resistance.9 33 34

Here we show that HFD-D mice were characterised by a large
increase in SVF cell number. In addition, most of the cellular
populations including macrophages, preadipocytes and
lymphocytes tended to increase. Such changes could be
responsible for the diabetic phenotype under the control of the
gut microbiota, and may even explain the increased inflamma-
tory tone observed in HFD-D mice via the slight but significant
increased activation of NF-kB and mTOR pathways which are
upregulated during metabolic diseases.
We conclude that a specific gut microbiota, aside from changes

in genetic background and diet, is a signature of the different
metabolic phenotypes of ‘diabetic’ versus ‘diabetes-resistant’
during metabolic adaptation to HFD. We cannot exclude the
possibility that subtle changes in the microbiota occurred before
the HFD treatment and/or that epigenetic mechanisms could
have oriented a given phenotype. However, mice from the same
cage do not have completely similar gut microbiota (as occurs in
mono-colonised axenic mice).
Our data suggest that the gut microbiota could affect WAT

biology, essentially affecting the SVF. Consequently, modulating

Figure 7 Liver weight, inflammation,
insulin and energy pathways during
metabolic adaptation. (A) Liver weight;
(B) TNFa, IL-6 and PAI-1 mRNA
concentrations; (CeE) western blot
analysis of phosphorylated and total
proteins involved in (C) insulin
signalling, (D) energy metabolism and
(E) inflammation from mice fed a high-
fat diet (HFD) which became diabetic
(HFD-D), diabetes-resistant (HFD-DR) or
mice fed a diet supplemented with
gluco-oligosaccharides (HFD+GOS).
Data are shown as mean 6 SEM;
*p<0.05, ***p<0.001 (unpaired
Student t test; n¼4 per group). IL,
interleukin; PAI-1, plasminogen
activator inhibitor 1; TNFa, tumour
necrosis factor a.
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the gut microbiota by appropriate dietary fibres represents
a promising strategy to control or prevent metabolic diseases.
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