and bacterial challenge at baseline, and following 2 h stimulation with lipopolysaccharide (LPS) and ammonia. Pro- and anti-inflammatory cytokines were determined by CBA.

Results

Baseline neutrophil TLR9 expression was significantly higher in patients with HE (ALF: Grade 3/4 vs controls: p < 0.02, vs grade 0–2: p < 0.03) (Cirrhotics: Grade 3/4 vs controls: p < 0.05, vs grade 0–2: p < 0.05). Moreover, their baseline TLR9 expression was associated with severity of HE and higher IL6 and IL8 levels. CD16 expression was downregulated by a median of 45% (range 25%–95%) in ALF patients with grade 3/4 HE compared to controls and in cirrhosis by a median of 85% (range 5%–90%) (Grade 3/4 vs controls: p < 0.05). Baseline CD11b expression did not differ between controls and patients. Exposure to LPS and ammonia upregulated TLR9 and CD11b and downregulated CD16.

Conclusion

Neutrophil TLR9 expression in patients with ALF and cirrhosis serves as a useful biomarker that differentiates those who develop high grade HE from those who do not. High baseline TLR9 expression and low CD16 expression promote a pro-inflammatory cytokine milieu that may help to explain the propensity to develop infection and why inflammation hastens the development of HE. TLR9 antagonists may be of therapeutic value in restoring neutrophil activity.

Competing interests

None declared.

PMO-127

BIOLOGICAL EFFECTS OF ORAL NANOPOROUS CARBON IN BILE DUCT LIGATED RATS

doi:10.1136/gutjnl-2012-302514b.127

Introduction

Gut-derived bacterial products and associated dysregulated inflammatory response play a central role in the pathogenesis of cirrhosis. Therapeutic options to target these factors are currently limited to long-term antibiotics. Nanoporous carbons are non-absorbable, synthetic materials which are safe with porosity manipulated for adsorption of middle and high molecular weight molecules and surface chemistry modified to alter adsorption capacity for biological molecules such as cytokines and endotoxin. We sought to determine their biological effects in bile-duct ligated rats as a model of cirrhosis.

Methods

151 male Sprague-Dawley rats underwent bile duct-ligation or sham biliary surgery. Animals were pair fed with or without oral carbon therapy 2 weeks from surgery until completion of the experiment at 4–5 weeks. Intra-portal ion lipopolysaccharide (LPS) was administered to four subgroups 3.5 h prior to completion of the study. The following groups were studied: Sham (n = 16), Sham + carbon (n = 15), Sham + LPS (n = 11), Sham+LPS+carbon (n = 10), BDL (n = 27), BDL + carbon (n = 26), BDL+LPS (n = 10), BDL+LPS +carbon (n = 16). Portal haemodynamics were performed on 93 rats and Kupffer cell (KC) numbers and Reactive oxygen species (ROS) production assessed by flow cytometry in a sub-group of animals. Liver biochemistry and portal venous cytokines were performed.

Results

A significant reduction in portal pressure was observed in BDL+LPS (mean 18.05 ± 0.88 mm Hg untreated, 10.17 ± 1.07 mm Hg with carbon, p < 0.05) and BDL (mean 12.57 ± 0.45 mm Hg untreated, 11.02 ± 0.22 mm Hg with carbon, p < 0.05) groups following carbon treatment. A significant reduction in ALT was observed in the carbon treated BDL+LPS (p < 0.05) and BDL groups (p < 0.05). Carbon treatment in BDL rats was associated with a significant reduction in LPS-induced ROS production. A trend towards reduction in portal venous IL-4 and IL-10 was observed in carbon-treated BDL rats. No significant difference in portal venous TNF-α was observed. Finally, a significant increase in body mass was observed in the BDL carbon-treated group (p < 0.05).

Conclusion

Oral nanoporous carbon therapy results in a significant reduction in portal pressure and liver biochemistry associated with a reduction in endotoxin-induced KC ROS production. We postulate therefore, that the effect of nanoporous carbon is possibly via a reduction in endotoxin induced KC stimulation.

Competing interests

None declared.