Introduction

Historically, the glucose hydrogen breath test has been popular for diagnosing small intestinal bacterial overgrowth (SIBO). Lately the glucose hydrogen methane breath test has become available. It is non-invasive and simple to carry out. This test is used as a part of standard clinical practice in patients suspected of having SIBO in our hospital. There are limited published data on the optimal test duration, with 3 h being the longest reported. This study aimed to determine if there is a significant difference in the number of patients who would be considered positive for SIBO depending on test duration.

Methods

Patients in whom the gastroenterologist suspected SIBO underwent a breath test performed by endoscopy nurses using the QuinTron BreathTracker DP Digital Microlyzer that measures hydrogen (H₂) and methane (CH₄) concentrations in parts per million (ppm). Pre-test preparation included avoiding slowly absorbed carbohydrates, fibre and large meals and limiting dairy intake and carbonated drinks for 24 h, a 12 h fast and avoiding exercise and cigarette smoking for 2 h. Breath H₂ and CH₄ concentrations were noted at baseline. Subjects then consumed 75 g (or 50 g if weight was <50 kg) in 100 ml of water. Thereafter, breath H₂ and CH₄ values were recorded every 20 min for 3 h (or less if positive). Positive test was defined as fasting H₂ >20 or CH₄ >10 ppm or a rise in H₂ >2 or CH₄ >6 ppm.

Results

98 males and 95 females, median age 63 years (range 28–96) underwent a breath test. Of these, 67 (38%) had a positive result for one or both gases: 18 (32%) at baseline, 59 (60%) by 40 min, 60 (90%) by 140 min, 67 (100%) by 160 min. 126 patients had negative breath tests; n = 75 had the test performed for a full 3 h, 26 (20%) had the test performed for 100 min only. In patients where the test was performed for 3 h the 95% CI for a false negative result at 100 min is 0.005 to 0.10.

Conclusion

Most patients with SIBO will have a positive result by 100 min. This suggests that a reduction in the duration of the test can be achieved without compromising the number of true positives being diagnosed with SIBO.

Competing interests

None declared.
number of patients achieving normalisation of duodenal mucosa (Marsh 0) at follow-up. 239 (65%) of 368 patients were available for paired initial and follow-up biopsies. The proportion achieving mucosal recovery, suggesting histological normalisation as the aim of therapy is not increased after 1 year on diet. We suggest that follow-up biopsy on diet is the only reliable form of assessing response to treatment, and that the proportion of patients achieving histological response could be used as a means of auditing quality of care in coeliac clinics.

PTU-157

DIETARY RESPONSE IN COELIAC DISEASE SHOULD BE ASSESSED BY REPEAT DUODENAL BIOPSY

doi:10.1136/gutjnl-2012-302514c.156

1G Corbett,1 L Sharkey,2 E Currie,2 J Lee,2 N Sweeney,2 J Woodward. 1Department of Gastroenterology and Clinical Nutrition, Addenbrookes Hospital, Cambridge, UK; 2Department of Nutrition and Dietetics, Addenbrookes Hospital, Cambridge, UK; 3University of Adelaide, Adelaide, Australia

Introduction Therapeutic goals in coeliac disease (CD) are poorly defined. Emerging evidence reports worse outcomes with lack of mucosal recovery, suggesting historical normalisation as the aim of treatment. However, few centres routinely re-biopsy and many clinicians depend on serology or symptoms for follow-up. This retrospective study evaluates the role of the follow-up biopsy compared to serology in treated coeliacs and is the largest study of paired biopsies reported.

Methods Details of patients attending the Addenbrookes Adult CD Clinic are entered onto a database. Patients undergo repeat duodenal biopsy 9–12 months after commencing dietary therapy. Serum Anti-TTG antibodies and total IgA are measured at clinic visits. Positive test: fasting H2 ≥20 or CH4 ≥10 ppm or a rise in H2 ≥12 or CH4 ≥6 ppm. Some patients also had duodenal aspirates collected endoscopically. Positive result: >10⁴ colony forming units/ml. Patients with positive tests were treated with antibiotics. Results were assessed retrospectively.

Results 126 patients, 66 males and 60 females, median group age 61 years (range 35–86), treated for gynaecological (30%), upper GI (25%), lower GI (9%), urological (23%), other cancers (10%)—myeloma, ependymoma, bronchial, breast and lymphoma—were referred. Daily troublesome GI symptoms included flatulence (85%), borborygmi (65%), belching (54%), bloating (52%), abdominal pain (50%), steatorrhoea (38%), nausea/vomiting (23%) and diarrhoea (19%). 60 (48%) had a positive breath test—all negative aspirate but 2 responded. Positive D2 aspirate with a response to antibiotics and 4 (67%) had negative aspirates but 81% response. Six patients (12%) were positive for both gases. Of these, 24 (46%) tested positive for Streptococcus (n=8), E. Coli (5), Candida (5), Klebsiella (2), Enterococcus (2), Pseudomonas (2), Neisseria (1), Aeromonas (1) and Stenotrophomonas (1). 17 (33%) had negative breath tests. Six of these had positive D2 aspirates with 3 (50%) responsive to antibiotics, 1 had negative aspirates but a 75% antibiotic response rate. 24 (46%) tested positive for both gases. 33% of these had a positive D2 aspirate with a 75% response rate to antibiotics and 67% negative aspirates but 81% response. Six patients (12%) were positive only for H2 (all had negative aspirates). 1 responded to antibiotics. 5 (10%) tested positive for CH4 only of which 1 had a positive D2 aspirate with a response to antibiotics and 4 (80%) had negative aspirate but 2 responded.

Conclusion Methane breath testing identifies 10% more patients with SIBO compared to the glucose hydrogen breath test alone. D2 aspirate increases the detection rate by 12%. A trial of antibiotics, with other tests negative, benefits 15% of patients. All current diagnostic methods are flawed. Better diagnostic tests for SIBO are required.

Competing interests None declared.

PTU-157

A PROSPECTIVE STUDY OF SERUM VITAMIN A AND D LEVELS IN PRIMARY BILE ACID DIARRHOEA

doi:10.1136/gutjnl-2012-302514c.157

1I Johnston,1 S S Pattni,1 J D Nolan,2 T Dew,1 J R Walters. 1Gastroenterology and Hepatology, Imperial College London, London, UK; 2Clinical Chemistry, Kings College London NHS Trust, London, UK

Introduction There is evidence that primary bile acid diarrhoea (BAD) is caused by disruption of the homeostatic mechanism controlling bile acid synthesis, with an overproduction of bile acids leading to chronic watery diarrhoea. Fibroblast Growth Factor 19 (FGF19) has been shown to be central to this homeostatic mechanism, providing negative feedback on CYP7A1, the rate limiting enzyme in bile acid synthesis. Median serum FGF19 levels have been shown to be lower in BAD patients than in diarrhoea controls. In mouse models, it has also been shown that expression of FGF15, the orthologue of FGF19, is induced by the active forms of vitamins A and D. The aim of this study was to investigate a possible causal relationship between low serum levels of vitamins A and D and BAD.

Methods Patients with chronic diarrhoea were recruited prospectively. All patients underwent routine testing to exclude other causes of diarrhoea and had SeHCAT tests. Patients were classified as having primary BAD, secondary BAD, or unexplained chronic diarrhoea (CD). Serum 25OH-vitamin D was measured by LC-MS using standard procedures. Serum Vitamin A was calculated by HPLC. Results are expressed as medians. Mann–Whitney and Spearman rank correlation tests were used in analyses.

Results Serum vitamin A levels were available in 145 subjects (primary BAD 46; secondary 29; CD 70). Serum vitamin D levels were available in 150 subjects (primary BAD 50; secondary 29; CD 71). There were no significant differences in the level of vitamin A between the groups with primary or secondary CD (2.10, 12 months, 12–24 months or after 24 months is 27%, 25% (p=0.61) and 25% (p=0.1) respectively. Those without villous atrophy (VA) (Marsh 0, 1 or 2) is 58%, 58% (p=0.98) and 52% (p=0.24) respectively. Excluding the 2.5% of patients with IgA deficiency, 13% of patients had negative anti-TTG antibody titres at the time of diagnostic biopsy. In the group of patients with positive serology at first biopsy, only 43% with VA on follow-up biopsy were positive for anti-TTG antibodies. Conversely, 13% without VA on follow-up had positive serology. The sensitivity, positive predictive and negative predictive values for serology compared to biopsy at follow-up are 43.4%, 68.3% and 70.5% respectively.

Conclusion Response to diet in CD might be monitored by symptoms, serology or histology. Many patients diagnosed in adulthood report minimal or no symptoms at diagnosis and this is therefore not a credible marker of response. Here we show that:

- Anti-TTG antibody serology has a sensitivity of 87% at diagnosis.
- Anti-TTG serology has a poor sensitivity (43%) on follow-up and is therefore unreliable.
- Histological response rates are not increased after 1 year on diet.
- Approximately 28% of patients achieve normal duodenal mucosa, 58% show no or minimal signs of coeliac disease on follow-up biopsy.

We suggest that follow-up biopsy on diet is the only reliable form of assessing response to treatment, and that the proportion of patients achieving histological response could be used as a means of auditing quality of care in coeliac clinics.

Competing interests None declared.